1277
Quidam habuit bizantios 100, et transivit per duodecim civitates; et oportebat ut in unaquaque illarum civitatum daret decimam suorum bizantiorum quos deferebat secum. Queritur quot remanserint ei post exitum duodecim civitatum.
Quia dabat decimam in unaquaque civitate, sequebatur necessario quod sibi remanerent novem decime omnium
1606 bizantiorum quos ipse detulerat
1607 in ipsa civitate.
1278
Quare pones \({9 \over 10}\) duodecies per ordinem in quadam virga terminante in circulo a sinistra, sic: 100 \(\textrm{o}{\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10~~10~~10}\); et multiplica in unum omnia 9 que sunt super virga, scilicet 9 per 9 que per 9; erunt 729, que multiplica in se: erunt 531441, que sunt summa sex novenariorum.
1279
Quam summam multiplica in seipsam: reddunt 282429536481
1608 pro summa

|
residuum |
\({\phantom{1}1~~\phantom{1}8~~\phantom{1}4~~\phantom{1}6~~\phantom{1}3~~\phantom{1}5~~\phantom{1}9~~\phantom{1}2~~\phantom{1}4~~\phantom{1}2 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10}\) 28 |
|
|
1609 omnium novenariorum, que multiplica per 100 et divide per omnia 10 que sunt sub virgula: exhibunt bizantii \({\phantom{1}1~~\phantom{1}8~~\phantom{1}4~~\phantom{1}6~~\phantom{1}3~~\phantom{1}5~~\phantom{1}9~~\phantom{1}2~~\phantom{1}4~~\phantom{1}2 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10} 28\) pro eo quod ei remansit in fine. Unde si volueris cognoscere quot bizantios inter omnes civitates dedit, de bizantiis quidem centum
1610 extrahes 28 cum suis fractionibus; residuumque
1611 erit quesitum.
1280
1612 Quod invenies sic: protrahe aliam virgulam, sub qua sint decies 10 in ordinem pro decem decenis
1613 que sunt sub virgula suprascripti residui, et accipe 1 quod est super prima 10 in sinistra parte et extrahe eum de 10;
1281
et remanent 9, que pone super priora 10 virge protracte, et retine in manu 1, ideo quia ex ipso 1 quod est super 10 et ex ipso novenario semel perficitur decenarius numerus.
1282
Cum quo 1 servato in manu adde 8 que sunt super sequentia 10; erunt 9, que extrahe de 10: remanet 1, quod pone super 10 noni gradus protracte virge, et retine 1 in manu.
1283
Cum quo adde 4 que sunt super 10 octavi gradus; erunt 5, que extrahe de 10: remanent 5, que pone super 10 octavi gradus et retine in manu 1. Cum quo adde 6 que sunt super 10 septimi gradus; erunt 7, que extrahe de 10: remanent 3, que 3 pone super 10 septimi gradus et retine 1, quod adde cum 3 que sunt super 10 sexti gradus virge; erunt 4, que extrahe de 10:
1284
remanent 6, que pone super 10 sexti gradus et retine 1, quod adde cum 5 que sunt super 10 quinti gradus, et extrahe de 10: remanent 4 super 10 quinti gradus et retineas in manu 1, quod adde cum 9 que sunt super 10 quarti gradus, et extrahe de 10: remanet 0 super 10 quarti gradus et retine in manu 1,
1285
quod adde cum 2 que sunt super 10 tertii gradus et extrahe de 10: remanent 7 super 10
1614 tertii gradus et retine 1, quod adde cum 4 que sunt super 10 secundi gradus et extrahe de 10: remanet 5 super 10 secundi gradus et retineas 1.
1286
Cum

|
summa exitus |
\({\phantom{1}9~~\phantom{1}1~~\phantom{1}5~~\phantom{1}3~~\phantom{1}6~~\phantom{1}4~~\phantom{1}0~~\phantom{1}7~~\phantom{1}5~~\phantom{1}7 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10} 71\) |
|
|
1615 quo adde 2 que sunt super 10 primi gradus et extrahe de 10: remanent 7 super 10 primi gradus protracte <virgule> et retineas 1, quod adde cum bizantiis 28
1616 et
1617 extrahe de bizantiis 100: remanent bizantii 71 ante ipsam virgulam, ut hic ostenditur \({\phantom{1}9~~\phantom{1}1~~\phantom{1}5~~\phantom{1}3~~\phantom{1}6~~\phantom{1}4~~\phantom{1}0~~\phantom{1}7~~\phantom{1}5~~\phantom{1}7 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10}\) 71, pro hoc quod dedit inter omnes illas civitates.
1287
Nam si hoc quod dederit vel quod ei remanserit de civitate in civitatem
1618 scire volueris, extrahe decimam ex illis 100 bizantiis quos dedit in prima civitate, scilicet bizantios 10: remanent ei 90 bizantii. De quibus bizantiis 90 extrahe decimam, scilicet bizantios 9 quos dedit in secunda civitate: remanent ei bizantii 81.
1288
De quibus bizantiis 81 extrahe decimam, scilicet bizantios \({1 \over 10}\) 8 quos dedit in tertia civitate: remanent bizantii \({9 \over 10}\) 72. De quibus accipe decimam quam dedit in quarta civitate, que duplici modo accipitur. Primus modus est ut multiplices 72 per suam virgulam, scilicet per 10 et adde 9; erunt 729, que divide per 100
1619: exibunt \({\phantom{1}9~~\phantom{1}2 \over 10~~10}\) 7 pro decima parte de \({9 \over 10}\) 72.
1289
Vel aliter: pone duas decimas sub quadam virgula et super primam pone 9 que sunt super 10 de virgula de 72, et super alia 10 pone 2 que sunt in primo gradu de 72; et remanentia 7 pone ante ipsam virgulam, et habebis similiter \({\phantom{1}9~~\phantom{1}2 \over 10~~10}\) 7, que extrahe de
1620 \({9 \over 10}\) 72, que duplici modo extrahuntur.
1290
Comunis omnium modus est ut multiplices 7 per suam virgulam: erunt centesime 729. Deinde multiplica 72 per suam virgulam: erunt decime 729, quas multiplica per 10 ut sint centesime sicut sunt ille que de hinc debes extrahere; erunt centesime 7290, ex quibus extrahe centesimas 729; remanent centesime 6561, quas divide per 100, scilicet per \({\phantom{1}1~~\phantom{1}0 \over 10~~10}\): exibunt bizanti \({\phantom{1}1~~\phantom{1}6 \over 10~~10}\) 65 pro suprascripto residuo.
1291
Vel aliter: protrahe retro virgulam
1621 que est post 72 et pone sub eadem 10, et super ipsum 10 pone 0, ut sint decime due sub ipsa virgula sicuti sunt sub ea que est post 7, ut hic ostenditur: \({\phantom{1}0~~\phantom{1}9 \over 10~~10}\) 72. Deinde accipe 9 que sunt super 10 in virgula de
1622 \({\phantom{1}9~~\phantom{1}2 \over 10~~10} 7\) et extrahe ea de 0 quod est super 10 de virgula de \({\phantom{1}0~~\phantom{1}9 \over 10~~10}\) 72.
1292
Quod cum non sit possibile, adde 10 super ipsum 0, scilicet numerum qui est sub virgula sub ipso 0: erunt 10, de quibus, cum possibile sit, extrahe 9; remanet 1, quod pone super priora 10 cuiusdam virgule sub qua sint similiter decime due, et pro addito decenario retine in manu 1;
1293
quod adde cum 2 que sunt super ultima 10 de virgula de
1623 \({\phantom{1}9~~\phantom{1}2 \over 10~~10}\) 7; erunt 3, que extrahe de 9, cum possibile sit, que sunt super ultima 10 de virgula de \({0~~9 \over 10~~10}\) 72: remanebunt 6, que pone super ultima 10 protracte linee
1624.
1294
Et extrahe 7 de bizantiis 72: remanent bizantii 65, quos pone ante protractam virgulam, et habebis similiter pro suprascripto residuo bizantios \({\phantom{1}1~~\phantom{1}6 \over 10~~10}\) 65. De quibus accipe decimam quam dedit in quinta civitate, que dupliciter per suprascriptos modos potest accipi; scilicet multiplica 65 per suam virgulam, scilicet per 10 et adde 6, que per 10 et adde 1, hoc est quod ante 65 pones 6 et 1 que sunt super virga, et sic habebis suprascriptas centesimas 6561 quas divide per 10 et per ruptos qui sunt sub ipsa virgula, scilicet per \({\phantom{1}1~~\phantom{1}0~~\phantom{1}0 \over 10~~10~~10}\): exibunt \({\phantom{1}1~~\phantom{1}6~~\phantom{1}5 \over 10~~10~~10}\) 6 pro decima parte eorum.
1295
Vel aliter: protrahe quandam
1625 virgulam sub qua pones tres decimas, et super primam pone 1 quod est super prima 10 in virgula de 65, et super alia pone 6 que sunt super alia 10, et super tertiam pone figuram primi gradus de 65, scilicet 5, et remanentia 6 pone ante ipsam virgulam; et sic habebis \({\phantom{1}1~~\phantom{1}6~~\phantom{1}5 \over 10~~10~~10} 6\) pro decima parte de suprascriptis bizantiis \({1~~6 \over 10~~10}\) 65.
1296
Quare extrahe ipsos ab ipsis, qui dupliciter per suprascriptos modos
1626 extrahuntur; quos modos hic reiterabimus ut in reliquis civitatibus melius procedere scias
1627. Multiplica bizantios 6 per eorum virgulam, et habebis millenas 6561.
1297
Similiter multiplica 65 per suam virgulam, vel pone ante ipsa
1628 figuras que sunt super virgulam, retro similiter per ordinem procedendo; erunt centesime 6561, quas multiplica per 10 ut sint millene sicut sunt alie quas debes de hinc
1629 extrahere; erunt millene 65610, de quibus extrahe millenas 6561; remanent millene
1630 59049, quas divide per 1000, hoc est per \({\phantom{1}1~~\phantom{1}0~~\phantom{1}0 \over 10~~10~~10}\): exibunt \({\phantom{1}9~~\phantom{1}4~~\phantom{1}0 \over 10~~10~~10}\) 59 pro quesito residuo.
1298
Vel aliter: protrahe retro virgulam de 65, et pones sub ipsa decem, et super ipsa decem pone 0, ut hic ostenditur: \({0~~1~~6 \over 10~~10~~10}\) 65. Deinde 1 quod est super 10 de virgula de \({\phantom{1}1~~\phantom{1}6~~\phantom{1}5 \over 10~~10~~10}\) 6 extrahe de 0 quod est super 10 de virgula de 65. Quod
1631 cum possibile non sit, adde cum ipso 0 numerum existentem sub ipso, scilicet 10; erunt 10, de quibus extrahe suprascriptum 1:
1299
remanent 9, que pone super prima
1632 10 cuiusdam protracte virgule sub qua sint tres decime, et pro addito decenario retine in manu 1, quod adde cum 6 que sunt super 10 virgule de \({\phantom{1}1~~\phantom{1}6~~\phantom{1}5 \over 10~~10~~10}\) 6; erunt 7, que extrahe de 1 quod est super secundum 10 de virgula de \({\phantom{1}0~~\phantom{1}1~~\phantom{1}6 \over 10~~10~~10}\) 65.
1300
Quod cum possibile non sit, adde cum ipso 1 numerum existentem sub ipso, scilicet 10; erunt 11, ex quibus extrahe suprascripta 7: remanent 4, que pone super secunda 10 protracte virgule et pro 10 que iunxisti cum 1 retine in manu 1. Quod adde cum 5 que sunt super ultima 10 virgule de \({\phantom{1}1~~\phantom{1}6~~\phantom{1}5 \over 10~~10~~10}\) 6
1633; erunt 6, que extrahe de 6 que sunt super ultima 10 virgule de \({\phantom{1}0~~\phantom{1}1~~\phantom{1}6 \over 10~~10~~10}\) 65
1634: remanet 0, quod pone super ultima 10 protracte virgule.
1301
Deinde extrahe bizantios 6 de bizantiis 65: remanebunt
1635 bizantii 59, quos pone ante protractam virgulam, et habebis similiter bizantios \({\phantom{1}9~~\phantom{1}4~~\phantom{1}0 \over 10~~10~~10}\) 59 pro quesito residuo. De quibus extrahe decimam per qualem volueris modum ex suprascriptis duobus modis
1636, que est bizantii \({\phantom{1}9~~\phantom{1}4~~\phantom{1}0~~\phantom{1}9 \over 10~~10~~10~~10}\) 5, quos dedit in sexta civitate: remanebunt bizantii \({\phantom{1}1~~\phantom{1}4~~\phantom{1}4~~\phantom{1}1 \over 10~~10~~10~~10}\) 53.
1302
De quibus extrahe decimam quam dedit in septima civitate, que est bizantii \({\phantom{1}1~~\phantom{1}4~~\phantom{1}4~~\phantom{1}1~~\phantom{1}3 \over 10~~10~~10~~10~~10} 5\): remanebunt bizantii \({\phantom{1}9~~\phantom{1}6~~\phantom{1}9~~\phantom{1}2~~\phantom{1}8 \over 10~~10~~10~~10~~10} 47\), de quibus extrahe decimam quam dedit in octava civitate, scilicet bizantios \({\phantom{1}9~~\phantom{1}6~~\phantom{1}9~~\phantom{1}2~~\phantom{1}8~~\phantom{1}7 \over 10~~10~~10~~10~~10~~10}\) 4: remanebunt bizantii \({\phantom{1}1~~\phantom{1}2~~\phantom{1}7~~\phantom{1}6~~\phantom{1}4~~\phantom{1}0 \over 10~~10~~10~~10~~10~~10} 43\).
1303
De quibus extrahe decimam quam dedit in nona civitate, scilicet bizantios \({\phantom{1}1~~\phantom{1}2~~\phantom{1}7~~\phantom{1}6~~\phantom{1}4~~\phantom{1}0~~\phantom{1}3 \over 10~~10~~10~~10~~10~~10~~10}\) 4; remanebunt bizantii \({\phantom{1}9~~\phantom{1}8~~\phantom{1}4~~\phantom{1}0~~\phantom{1}2~~\phantom{1}4~~\phantom{1}7 \over 10~~10~~10~~10~~10~~10~~10}\) 38. De quibus extrahe decimam quam dedit in decima civitate, scilicet bizantios \({\phantom{1}9~~\phantom{1}8~~\phantom{1}4~~\phantom{1}0~~\phantom{1}2~~\phantom{1}4~~\phantom{1}7~~\phantom{1}8 \over 10~~10~~10~~10~~10~~10~~10~~10} 3\): remanebunt bizantii \({\phantom{1}1~~\phantom{1}0~~\phantom{1}4~~\phantom{1}4~~\phantom{1}8~~\phantom{1}7~~\phantom{1}6~~\phantom{1}8 \over 10~~10~~10~~10~~10~~10~~10~~10} 34\).
1304
De quibus extrahe decimam quam dedit in undecima civitate, scilicet bizantios \({\phantom{1}1~~\phantom{1}0~~\phantom{1}4~~\phantom{1}4~~\phantom{1}8~~\phantom{1}7~~\phantom{1}6~~\phantom{1}8~~\phantom{1}4 \over 10~~10~~10~~10~~10~~10~~10~~10~~10} 3\): remanebunt bizantii \({\phantom{1}9~~\phantom{1}0~~\phantom{1}6~~\phantom{1}9~~\phantom{1}5~~\phantom{1}0~~\phantom{1}1~~\phantom{1}8~~\phantom{1}3 \over 10~~10~~10~~10~~10~~10~~10~~10~~10}\) 31. De quibus extrahe decimam quam
1637 dedit in ultima civitate, scilicet bizantios \({\phantom{1}9~~\phantom{1}0~~\phantom{1}6~~\phantom{1}9~~\phantom{1}5~~\phantom{1}0~~\phantom{1}1~~\phantom{1}8~~\phantom{1}3~~\phantom{1}1 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10} 3\)
1638: remanebunt bizantii \({\phantom{1}1~~\phantom{1}8~~\phantom{1}4~~\phantom{1}6~~\phantom{1}3~~\phantom{1}5~~\phantom{1}9~~\phantom{1}2~~\phantom{1}4~~\phantom{1}2 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10}\) 28, ut per aliam regulam superius invenimus.
1305
Et ut hoc quod dictum est melius ad oculum deprehendatur, hic inferius bizantios quos in unaquaque civitate dedit in una parte et in alia bizantios qui remanserunt per ordinem describimus:
1306

|
hi sunt bizantii qui remanserunt 100 |
hi sunt bizantii quos dedit 10 |
90 |
9 |
81 |
\({1 \over 10}\) 8 |
\({9 \over 10}\) 72 |
\({\phantom{1}9~~\phantom{1}2 \over 10~~10}\) 7 |
\({\phantom{1}1~~\phantom{1}6 \over 10~~10}\) 65 |
\({\phantom{1}1,\phantom{1}6,\phantom{1}5 \over 10,10,10}\) 6 |
\({9,4,0 \over 10,10,10}\) 59 |
\({9,4,0,9 \over 10,10,10,10}\) 5 |
\({1,4,4,1 \over 10,10,10,10}\) 53 |
\({1,4,4,1,3 \over 10,10,10,10,10}\) 5 |
\({9,6,9,2,8 \over 10,10,10,10,10}\) 47 |
\({9,6,9,2,8,7 \over 10,10,10,10,10,10}\) 4 |
\({1,2,7,6,4,0 \over 10,10,10,10,10,10}\) 43 |
\({1,2,7,6,4,0,3 \over 10,10,10,10,10,10,10}\) 4 |
\({9,8,4,0,2,4,7 \over 10,10,10,10,10,10,10}\) 38 |
\({9,8,4,0,2,4,7,8 \over 10,10,10,10,10,10,10,10}\) 3 |
\({1,0,4,4,8,7,6,8 \over 10,10,10,10,10,10,10,10}\) 34 |
\({1,0,4,4,8,7,6,8,4 \over 10,10,10,10,10,10,10,10,10}\) 3 |
\({9,0,6,9,5,0,1,8,3 \over 10,10,10,10,10,10,10,10,10}\) 31 |
\({9,0,6,9,5,0,1,8,3,1 \over 10,10,10,10,10,10,10,10,10,10}\) 3 |
\({1,8,4,6,3,5,9,2,4,2 \over 10,10,10,10,10,10,10,10,10,10}\) 28 |
|
|
|
|
1307
Eadem questio est de bucte in qua sunt bariles 100 vini, ex quibus per singulos menses extrahitur decima
1639 residui, et queritur quot bariles in fine anni remanserunt, scilicet post 12 menses. Nam si econtra propositum esset quod quidam habens bizantios perrexit per 12 civitates, et dedit in unaquaque civitate decimam residui suorum bizantiorum, et remanserunt ei bizantii \({\phantom{1}1~~\phantom{1}8~~\phantom{1}4~~\phantom{1}6~~\phantom{1}3~~\phantom{1}5~~\phantom{1}9~~\phantom{1}2~~\phantom{1}4~~\phantom{1}2 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10} 28\); et queratur quota sit summa bizantiorum ipsius,
1308
describe in ordinem duodecies \({9 \over 10}\) sub quadam virgula suprascripta
1640 ratione, ut hic ostenditur: \(\textrm{o}{\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9~~\phantom{1}9 \over 10~~10~~10~~10~~10~~10~~10~~10~~10~~10~~10~~10}\)
1641, et multiplica bizantios 28 cum suis fractionibus per omnia 10 que sunt sub duodecim novenariis prescripte virgule et divide summam ipsius multiplicationis per illos duodecim novenarios, cum positi fuerint sub quadam virgula, et sic habebis bizantios 100 pro summa illius.
1309
Quidam habens bizantios voluit exire de quadam civitate habente portas 10, et oportuit eum dare prime porte \({2 \over 3}\) suorum bizantiorum et insuper \({2 \over 3}\) unius bizantii, secunde dimidium bizantiorum quos ibi attulit et insuper \({1 \over 2}\) unius bizantii, tertie tertiam
1642 et \({1 \over 3}\) unius bizantii, quarte quartam et \({1 \over 4}\) unius bizantii. Et ita per ordinem, usque quod in decima porta dedit decimam bizantiorum quos ibi attulit et \({1 \over 10}\) unius bizantii, et remansit ei bizantius 1. Queritur quot bizantios habuit ille.
1310
Potest itaque hec questio dupliciter solvi: primum quidem ut de porta in portam, ab ultima incipiendo, egrediaris sic. Nam in fine remansit ei bizantius 1 et dedit ultime porte decimam unius bizantii; ergo cum ipse dedit ipsam decimam habebat bizantium \({1 \over 10}\) 1.
1311
Et quia tunc dederat decimam bizantiorum quos ibi attulit et remansit ei bizantius \({1 \over 10}\) 1, inveniendus est numerus ex quo extracta \({1 \over 10}\) remaneat bizantius \({1 \over 10}\) 1. Quem numerum pone ut sit 10 secundum regulas arborum; de quo extracta
1643 \({1 \over 10}\), remanent 9, que 9 vellent esse \({1 \over 10} 1\). Quare multiplica 10 per \({1 \over 10}\) 1 et divides per 9: exibunt bizantii \({2 \over 9} 1\), et tantum remansit ei post nonam portam.
1312
Cum quo adde \({1 \over 9}\) unius bizantii quem dedit none porte: erit bizantius \({1 \over 3}\) 1. Quare invenies numerum de quo extracta \({1 \over 9}\) ipsius remaneat bizantius \({1 \over 3}\) 1. Pones ergo quod numerus ille sit 9, de quo extracto \({1 \over 9}\) remanent 8, que vellent esse \({1 \over 3}\) 1. Quare multiplica \({1 \over 3}\) 1 per 9 et divides per 8: exibit bizantius \({1 \over 2} 1\), et tantum
1644 remansit ei post octavam portam.
1313
Cum quo adde \({1 \over 8}\) unius bizantii quod dedit in ipsa porta; erit bizantius \({5 \over 8}\) 1, quem demonstrata ratione multiplica per 8 et divide per 7; exibit bizantius \({6 \over 7}\) 1
1645, cum quo adde \({1 \over 7}\) unius bizantii quam
1646 dedit septime porte: erunt bizantii 2, quos multiplica per 7 et divide per 6; exibunt bizantii \({1 \over 3} 2\)
1647, cum quibus adde \({1 \over 6}\) unius bizantii quam
1648 dedit sexte porte; erunt bizantii \({1 \over 2}\) 2, quos multiplica per 6 et divide per 5: exibunt bizantii 3.
1314
Cum quibus adde \({1 \over 5}\) unius bizantii quam dedit quinte porte; erunt bizantii \({1 \over 5}\) 3, quos multiplica per 5 et divide per 4: exibunt bizantii 4. Cum quibus adde \({1 \over 4}\) unius bizantii quam dedit quarte porte; erunt bizantii \({1 \over 4}\) 4, quos multiplica per 4 et divide per 3: exibunt bizantii \({2 \over 3}\) 5. Cum quibus adde \({1 \over 3}\) unius bizantii quam dedit tertie porte; erunt bizantii 6, quos multiplica per 3 et divide per 2: exibunt bizantii 9, et tot remanserunt ei post secundam portam.
1315
Cum quibus adde \({1 \over 2}\) unius bizantii quod dedit in secunda porta: erunt bizantii \({1 \over 2}\) 9, pro quibus invenies numerum ex quo extracto dimidio ipsius remaneant bizanti \({1 \over 2}\) 9. Pro quo numero pones 2, ex quo extracto dimidio remanet 1, quod vellet esse \({1 \over 2} 9\). Quare multiplica \({1 \over 2} 9\) per 2 et divides per 1: exibunt bizantii 19, et tot remanserunt ei post primam portam.
1316
Cum quibus adde \({2 \over 3}\) unius bizantii quas dedit in prima
1649 porta; erunt bizantii \({2 \over 3}\) 19, pro quibus inveniendus est numerus de quibus extractis \({2 \over 3}\) ipsius remaneant bizantii \({2 \over 3}\) 19. Pone quod numerus ille sit 3, ex quo extractis \({2 \over 3}\) remanet 1, quod vellet esse \({2 \over 3}\) 19. Quare multiplica \({2 \over 3}\) 19 per 3 et divides per 1 secundum suprascriptas
1650 arboris regulas
1651: exibunt bizantii 59, et tot habuit ille.
1317
Aliter: inveniamus primum summam bizantiorum de qua
1652 potuit dare partes suprascriptas in 10 portas sine fractionibus unius bizantii que adduntur in eisdem portis, quod invenies sic: quia ex ipsa summa dedit prime porte \({2 \over 3}\), ergo ex eadem remansit ei tertia pars; de qua tertia dedit dimidium in secunda porta, et sic remansit ei dimidium tertie partis eiusdem summe; de quo dedit in tertia porta tertiam partem, et sic remanserunt ei due tertie medietatis tertie partis eiusdem summe.
1318
Quo modo et ordine, si de porta in portam processeris, invenies ei remansisse in fine decem portarum \(\textrm{o}{\phantom{1}9~~8~~7~~6~~5~~4~~3~~2~~1~~1 \over 10~~9~~8~~7~~6~~5~~4~~3~~2~~3}\)
1653 ex predicta summa; quod residuum ponitur fuisse bizantium 1. Quare que proportio
1654 habet denominans ipsius virge ad denominatum
1655, eandem proportionem
1656 habet 1 ad predictam summam.
1319
Quare multiplicabis summam multiplicationis omnium numerorum qui sunt sub virga per 1
1657 et divides per omnes numeros qui sunt super virgam, inter quos est evitatio maxima, ita quod non oportet multiplicare nisi 3 per 10, scilicet numeros extremos, et dividere per 1, et habebis 30, quos oportuit eum habere ut persolveret suprascriptas partes in prescriptis portis
1658 et remaneat ei bizantius 1.
1320
Unde ut habeamus bizantios de quibus ipse persolvit fractiones unius bizantii in singulis portis, multiplica \({2 \over 3}\) unius bizantii quas dedit in prima porta per 3 que primo posita sunt sub virgula, et divide per 1 quod est super ipsa 3; erunt bizantii 2, quos adde cum 30 inventis: erunt bizantii 32.
1321
Nam ipsi bizantii 2 sunt illi de quibus dedit duas partes, et remanserunt inde \({2 \over 3}\) unius bizantii quas dedit in prima porta. Item multiplica \({1 \over 2}\) unius bizantii quod dedit in secunda porta per 3 et per 2 que sunt sub virgula et divide per 1 quod est super 3 et per 1 quod est super 2: erunt bizantii 3, de quibus dedit in prima porta \({2 \over 3}\) ipsorum, et in secunda dimidium reliqui, et insuper dimidium unius bizantii quod dedit in secunda porta; quibus bizantiis 3 additis cum bizantiis 32 inventis erunt 35.
1322
Item multiplica \({1 \over 3}\) unius bizantii quam dedit in tertia porta per numeros trium portarum qui sunt positi sub virgula, scilicet per 3 que per 2 que per 3, et divides per numeros qui positi sunt super ipsos tres numeros, scilicet per 1 quod est super 3 et per 1 quod est super 2 et per 2 que sunt super alia 3: erunt similiter bizantii 3, quos oportuit eum habere in tertia porta ut persolverentur ex eis antecedentes partes et insuper \({1 \over 3}\) unius bizantii eidem porte. Quibus additis cum bizantiis 35 inventis erunt bizantii 38.
1323
Rursus multiplica \({1 \over 4}\) unius bizantii per numeros quattuor portarum qui sunt sub virgula, scilicet per 4 que per 3 que per 2 que per 3, et divides per numeros earundem portarum qui sunt super virgulam, scilicet per 3 que sunt super 4 et per 2 que sunt super 3 et per 1 quod est super 2 et per 1 quod est super 3, et evitabis hoc quod poteris: exibunt similiter bizantii 3.
1324
Quod idem si fecerimus de reliquis portis, habebimus similiter in unaquaque bizantios 3. Quibus omnibus ternariis, videlicet septem portarum que remanent, insimul iunctis faciunt bizantios 21; quibus additis cum bizantiis 38 inventis reddunt similiter bizantios 59 pro summa bizantiorum illius.