[R:75r]

258 De canna Provincie691

Canna Provincie, que est palmi 8, venditur pro libris \({\phantom{1}7~~\phantom{1}5 \over 12~~20}\) 3, et queratur
787 £ pal.
\({\phantom{1}7~~\phantom{1}5 \over 12~~20}\) 3 8
pensa est 4 per 7 139
\({1~~4~~7~~\phantom{1}7~~11 \over 4~~8~~9~~12~~20}\) 1 \({1 \over 9} {3 \over 4} 3\)
692 quantum valeant palmi \({1 \over 9}\) \({3 \over 4}\) 3. Describes questionem, et multiplicabis \({1 \over 9}\) \({3 \over 4}\) 3 per \({\phantom{1}7~~\phantom{1}5 \over 12~~20}\) 3 et divides per 8, ordinans \({\phantom{1}1~~\phantom{1}0 \over 12~~20}\) in capite virgule divisionis, ideo quia locus in quo ponenda est summa est sub libris, scilicet sub \({\phantom{1}7~~\phantom{1}5 \over 12~~20}\) 3693: exibit libra694 \({1~~4~~7~~\phantom{1}7~~11 \over 4~~8~~9~~12~~20}\) 1, ut in questione ostenditur695. 259 Et scias quia quot soldos valuerit ipsa canna, tot denarios cum totidem mediis denariis valebit palmus. Verbi gratia: cum canna valet soldos 14, palmus valet denarios 14 cum totidem obulis, hoc est denarios 21.

260 696 Item eadem canna valet libre \({11 \over 20}\) 5, et queritur quantum valeant
111 3
\({11 \over 20}\) 5 1
pensa est 6 per 7 439
\({3~~\phantom{1}9~~\phantom{1}2 \over 8~~12~~20}\) 76 \({3~~5 \over 4~~8}\) 13
canne 13 et palmi \({3 \over 4}\) 5, hoc est canne \({3~~5 \over 4~~8}\) 13, hoc est palmi \({3 \over 4}\) 109. Describes questionem sic, et multiplicabis \({11 \over 20}\) 5 per \({3~~5 \over 4~~8}\) 13 et divides per 1, hoc est quod697 multiplicabis 5 per suam virgulam; erunt 111, et 13 per suam virgulam; erunt 439, que multiplicabis per 111: erunt 48729 que divides per ruptos, scilicet per \({1~~0~~\phantom{1}0 \over 4~~8~~20}\). 261 Sed cum locus in quo ponenda est summa sit sub libris, scilicet sub \({11 \over 20}\) 5, oportet nos habere \({\phantom{1}1~~\phantom{1}0 \over 12~~20}\). Sed non possumus habere \({1 \over 12}\), quia minuit nobis \({1 \over 3}\) ex ea698. Pones 3 super 1 in questione, et multiplicabis 48729 per 3 et divides summam per eadem 3 et per \({1~~0~~\phantom{1}0 \over 4~~8~~20}\), hoc est699 per \({1~~\phantom{1}0~~\phantom{1}0 \over 8~~12~~20}\): exibunt libre \({3~~\phantom{1}9~~\phantom{1}2 \over 8~~12~~20}\) 76.

  • 691De canna Provincie:   om. α R
  • 692
    787 £ pal.
    \({\phantom{1}7~~\phantom{1}5 \over 12~~20}\) 3 8
    pensa est 4 per 7 (pensa est 4 per 7:   per 7 est 4 A   om. F) 139 (139:   15 F)
    \({1~~4~~7~~\phantom{1}7~~11 \over 4~~8~~9~~12~~20}\) 1 (\({1~~4~~7~~\phantom{1}7~~11 \over 4~~8~~9~~12~~20}\) 1:   om. F) \({1 \over 9} {3 \over 4} 3\) (\({1 \over 9} {3 \over 4} 3\):   \({2 \over 4} 3\) A)
    (pensa est 4 per 7:   per 7 est 4 A   om. F) (139:   15 F) (\({1~~4~~7~~\phantom{1}7~~11 \over 4~~8~~9~~12~~20}\) 1:   om. F) (\({1 \over 9} {3 \over 4} 3\):   \({2 \over 4} 3\) A) :   om. G R V
  • 6933:   om. R
  • 694exibit libra:   exibunt libre R
  • 695ut in questione ostenditur:   om. F S V
  • 696260-261:   om. α F S    habet H
  • 697est quod:   quod R    recte H
  • 698ea:   eo R
  • 699hoc est:   hoc R    recte H

Liber Abbaci

Instrumenta

Capitulum octavum

Indice