23
Extractio de \({1 \over 7}\) \({1 \over 5}\) de \({1 \over 4}\) \({1 \over 3}\)
Si vero \({1 \over 7}\) \({1 \over 5}\) de \({1 \over 4}\) \({1 \over 3}\) extrahere volueris,

|
144 |
245 |
\({1 \over 7}\) |
\({1 \over 5}\) |
\({1 \over 4}\) |
\({1 \over 3}\) |
extractio |
\({5~~2~~2\phantom{0} \over 6~~7~~10}\) |
|
\({1~~2~~6 \over 2~~8~~9}\) 1 |
|
\({4~~0~~4 \over 5~~7~~7}\) |
|
|
51 reperies prescripta 245 et 144 per qualem volueris modum de duobus prescriptis modis, et extrahe 144 de 245: remanebunt 101, que suprascripta ratione divide per \({1~~0~~0\phantom{0} \over 6~~7~~10}\): exibunt \({5~~2~~2\phantom{0} \over 6~~7~~10}\) pro residuo dicte extractionis.
24
Et si \({1 \over 4}\) \({1 \over 3}\) per \({1 \over 7}\) \({1 \over 5}\) dividere vis, divide 245 per regulam de 144
52, exibunt \({1~~2~~6 \over 2~~8~~9}\) 1. Et si 144 per regulam de 245 diviseris, habebis \({4~~0~~4 \over 5~~7~~7}\) pro eo quod
53 contingit integre parti ex divisione \({1 \over 7}\) \({1 \over 5}\) in \({1 \over 4}\) \({1 \over 3}\), ut in questione ostenditur.