110
Extractio \({1 \over 5}\) \({3 \over 4}\) 16 de \({1 \over 9}\) \({4 \over 5}\) 442216
Iterum
217 si \({1 \over 5}\) \({3 \over 4}\) 16 de \({1 \over 9}\) \({4 \over 5}\) 442
218 extrahere volueris, extrahes 3051 de 79724; remanebunt 76673, que superscripta ratione divides per \({1~~0~~\phantom{1}0 \over 2~~9~~10}\); exibunt \({1~~5~~\phantom{1}9 \over 2~~9~~10}\) 425 pro residuo quesite extractionis. Vel extrahe \({1 \over 5}\) 16
219 de \({1 \over 9}\) \({4 \over 5}\) 442; remanent \({1 \over 9}\) \({3 \over 5}\) 426. Et tunc
220 extraheres
221 \({3 \over 4}\) de \({1 \over 9}\) \({3 \over 5}\)
222, si possibile esset; sed quia possibile non est, extrahe \({1 \over 9}\) \({3 \over 5}\) 1
223 de \({1 \over 9}\) \({3 \over 5}\)
224 426; remanent 425. Deinde extrahes \({3 \over 4}\) de prescripto \({1 \over 9}\) \({3 \over 5}\) 1; remanebunt \({1~~5~~\phantom{1}9 \over 2~~9~~10}\) amplius de 425 pro eodem residuo.
111
Rursus si \({1 \over 9}\) \({4 \over 5}\) 442 per \({1 \over 5}\) \({3 \over 4}\) 16 dividere volueris, divide 79724 per regulam de 3051; exibunt \({2~~6~~\phantom{1}14 \over 3~~9~~113}\) 26 pro quesita divisione. Et si \({1 \over 5}\) \({3 \over 4}\) 16 per \({1 \over 9}\) \({4 \over 5}\) 442 dividere volueris, divide 3051 per regulam de 79724; exibunt \({3~~\phantom{1}762\phantom{1} \over 4~~19931}\)
225 pro quesita divisione.