87 De multiplicatione integrorum cum tribus virgis et duobus ruptis sub virga

Si vis multiplicare 23 et duas septimas et duas tertias septime et duas nonas et octavam none et quintam et duas quintas quinte per 32 et quinque tredecimas227 et quartam tertie decime et tres decimas et duas quintas decime et quinque septimas decimas et dimidiam septime decime, pone numeros ut in margine cernuntur228 et multiplica 23 per primam suam virgam, scilicet per 7 et adde 2, que per 3 et adde 2 que sunt super 3; erunt 491, que multiplica per 9, que per 8, que per 5, que per 5 que sunt229 sub reliquis duabus virgis: erunt 883800, quorum pensa230 per pensam de 11 est 5. 88 Item multiplica 2 que sunt super 9 per 8 que sunt sub eadem virga et adde 1 quod est super 8; erunt 17, que multiplica per 5, que per 5 que sunt sub tertia virga: erunt 425, que per 3, que per 7 que sunt sub prima virga: erunt 8925, quorum proba est 4. Post hec multiplica 1 quod est super 5 per 5 que sunt sub eis retro et adde 2: erunt 7, que multiplica per 8, que per 9, que per 3, que per 7 que sunt sub secunda et prima virga: erunt 10584, quorum pensa est 2. Adde231 primum tres inventas pensas, scilicet 5232 et 4 et 2: erunt 11 quorum pensam, scilicet 0233, serva et adde postea tres inventos numeros: erunt 903309, quorum pensa est 0 quod servasti.

89 Quam pensam requires in predicto numero sic: divide234 primum 90, scilicet numerum235 duarum ultimarum figurarum, per 11; remanent 2, quibus copulatis cum tribus que sunt in quarto gradu
903309 ⓪
\({2~~1 \over 5~~5}\) \({1~~2 \over 8~~9}\) \({2~~2 \over 3~~7}\) 23
2923156 ⑤
\({1~~5\phantom{7} \over 2~~17}\) \({2~~3\phantom{0} \over 5~~10}\) \({1~~5\phantom{3} \over 4~~13}\) 32
\({1~~0~~2~~3\phantom{0}~~1\phantom{0}~~1\phantom{0}~~1\phantom{0}~~8\phantom{3}~~3\phantom{7} \over 2~~7~~9~~10~~10~~10~~10~~13~~17}\) 790
236 faciunt 23, quibus divisis per 11 remanet237 1, quo copulato cum 3 tertii gradus faciunt 13, quibus divisis per 11 remanent 2, quibus copulatis cum 0 secundi gradus erunt 20, quibus divisis per 11 remanent 9238, quibus copulatis cum 9 primi gradus faciunt 99, quibus divisis per 11 remanet239 0, ut oportet. Et hic est modus investigandi probas in numeris. 90 Serva ergo 903309 et eorum proba super 23; deinde multiplica 32 per suas virgas ordine quo multiplicasti 23 per suas: venient 2923156. Serva ea cum240 eorum pensa, que erit 5, super 32 et multiplica 903309 per 2923156 et divide per omnes numeros qui sunt sub virgis. 91 Sed241 primum propter evitationem que fieri potest, divide 903309 per 3; venient 301103, et divide 2923156242 per 4: venient 730789, que multiplica per 301103 et dele de divisione 3 que sunt sub prima superiorum et 4 que sunt sub prima virga inferiorum, et reliquos numeros apta sub una virga, quorum aptatio243 est \({1~~0~~0~~0\phantom{0}~~0\phantom{0}~~0\phantom{0}~~0\phantom{0}~~0\phantom{3}~~0\phantom{7} \over 2~~7~~9~~10~~10~~10~~10~~13~~17}\); et sic habebis summam quesitam, ut in questione ostenditur. 92 Et quia hanc summam habuisti ex divisione numeri procreati ex multiplicatione de 301103 per 730789, debes pensam ipsius summe habere ex multiplicatione pense de 301103, que est 0, in pensam de 730789, que est 4; quare suprascripte summe pensa est244 0, quia multiplicato245 0 per 4 facit 0.

93 De eodem cum tribus ruptis246 sub unaquaque virga

Item si tres ruptos sub unaquaque virgula ponere volueris, ut in hac in qua ponitur multiplicatio de \({1~~2~~1 \over 3~~5~~5}\) \({1~~2~~3 \over 2~~9~~10}\) \({1~~1~~6 \over 2~~7~~17}\) 11 in \({2~~5~~1 \over 3~~6~~7}\) \({1~~2~~2 \over 5~~7~~9}\) \({1~~3~~3\phantom{0} \over 2~~8~~10}\) 22, descripta questione multiplicabis 11 per primam suam virgulam; erunt 2705, que multiplica per omnes numeros qui sunt sub aliis suis duabus virgulis: erunt 36517500, que serva. Et multiplica 3 que sunt super 10 de secunda virgula per 9 et adde 2, que multiplica per 2 et adde 1247; erunt 59, que multiplica per numeros qui sunt sub aliis duabus virgulis, scilicet sub tertia et sub prima: erunt 1053150, que serva. 94 Deinde accipe numerum tertie virgule, scilicet multiplica 1 quod est super 5 per alia 5 que sunt post ipsa et adde 2, que per 3 et adde 1; erunt 22, que multiplica per omnes numeros qui sunt sub aliis duabus virgulis, scilicet sub secunda et sub prima: erunt 942480. Adde ergo 942480 cum 1053150 et cum 36517500: erunt 38513130, que pone super 11 et suas virgulas. 95 Deinde multiplica 22 per suas virgulas sicuti modo multiplicasti 11 per suas: erunt in summa 145288710, que pone super 22 et suas virgulas; et multiplica 38513130 per 145288710 et divide per omnes ruptos qui sunt sub omnibus virgulis, et habebis summam quesite multiplicationis. 96 Nam si evitare volueris ea que inde evitari possunt,
pensa est 10 per 11
38513130 ⑦
\({1~~2~~1 \over 3~~5~~5}\) \({1~~2~~3\phantom{0} \over 2~~9~~10}\) \({1~~1~~6\phantom{7} \over 2~~7~~17}\) 11
145288710 ⑥
\({2~~5~~1 \over 3~~6~~7}\) \({1~~2~~2 \over 5~~7~~9}\) \({1~~3~~3\phantom{0} \over 2~~8~~10}\) 22
pensa est⑩
\({1~~2~~1~~0~~1~~3~~9\phantom{0}~~5\phantom{0}~~0\phantom{0}~~4\phantom{7} \over 2~~7~~7~~8~~9~~9~~10~~10~~10~~17}\) 274
248 divide 38513130 per 10 que sunt sub secunda virgula in superiori latere, ideo quia integraliter potest249 fieri; exibunt 3851313, que divide per 3 que sunt sub tertia virgula superioris numeri: exibunt 1283771, que servabis, ideo quia non possunt dividi per aliquem numerum existentem sub aliqua suprascriptarum sex virgularum, et relinques quod non divides per 3 nec per 10 in quibus modo divisisti. 97 Deinde divide 145288710 per 10 que sunt in prima virgula inferioris numeri250 et per 7 et per 9 que sunt sub secunda virgula, quia in eis integraliter dividi possunt; exibunt 230617, que multiplica per 1283771: erunt 296059416707, que divides per omnes alios numeros qui sunt sub prescriptis virgulis, scilicet per251 \({1~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0\phantom{7} \over 2~~2~~2~~3~~5~~5~~5~~6~~7~~7~~8~~9~~17}\)252, quos apta secundum suprascriptum aptandi modum; exibunt \({1~~2~~1~~0~~1~~3~~9\phantom{0}~~5\phantom{0}~~0\phantom{0}~~4\phantom{7} \over 2~~7~~7~~8~~9~~9~~10~~10~~10~~17}\) 274 pro summa quesite multiplicationis.

  • 227tredecimas:   tertiasdecimas R
  • 228cernuntur:   cernitur R
  • 229sunt:   om. α F S
  • 230pensa:   pensam F
  • 231Adde:   Et adde R
  • 2325:   7 A F S   per 7 G
  • 233pensam, scilicet 0:   pensa est scilicet 0 ( ante corr. S) A F   pensa que est 0 post corr. S   pensa que est scilicet 0 G V   pensa est 0 que R
  • 234divide:   divisis de α F   divisis ( ante corr. S) R
  • 235numerum:   numero R
  • 236
    903309 ⓪
    \({2~~1 \over 5~~5}\) (\({2~~1 \over 5~~5}\):   \({1~~2 \over 5~~5}\) R S) \({1~~2 \over 8~~9}\) \({2~~2 \over 3~~7}\) 23
    2923156 ⑤
    \({1~~5\phantom{7} \over 2~~17}\) (\({1~~5\phantom{7} \over 2~~17}\):   \({1~~2 \over 5~~7}\) R   \({1~~5 \over 2~~7}\) F S) \({2~~3\phantom{0} \over 5~~10}\) \({1~~5\phantom{3} \over 4~~13}\) 32
    \({1~~0~~2~~3\phantom{0}~~1\phantom{0}~~1\phantom{0}~~1\phantom{0}~~8\phantom{3}~~3\phantom{7} \over 2~~7~~9~~10~~10~~10~~10~~13~~17}\) 790
    (\({2~~1 \over 5~~5}\):   \({1~~2 \over 5~~5}\) R S) (\({1~~5\phantom{7} \over 2~~17}\):   \({1~~2 \over 5~~7}\) R   \({1~~5 \over 2~~7}\) F S) :   om. V
  • 237remanet:   remanent ( ante corr. S) A F V
  • 2389:   2 F
  • 239remanet:   remanent A F R S V
  • 240cum:   et S    supra lineam corr. S2
  • 241Sed:   Si S
  • 2422923156:   2925156 F
  • 243aptatio:   aptatione R
  • 244suprascripte summe pensa est:   pensa suprascripte (predicte V) summe est α R   est summe pensa suprascripte F   add. est post suprascripte supra lineam F2
  • 245multiplicato:   multiplicatio de R
  • 246ruptis:   virgis α F R
  • 2472 et adde 1:   21 α
  • 248
    pensa est 10 per 11 (pensa est 10 per 11 (⑪ R):   om. S)
    38513130 ⑦ (38513130 ⑦:   36513130 ② α)
    \({1~~2~~1 \over 3~~5~~5}\) \({1~~2~~3\phantom{0} \over 2~~9~~10}\) (\({1~~2~~3\phantom{0} \over 2~~9~~10}\):   \({1~~3~~3\phantom{0} \over 2~~9~~10}\) R) \({1~~1~~6\phantom{7} \over 2~~7~~17}\) 11
    145288710 ⑥
    \({2~~5~~1 \over 3~~6~~7}\) \({1~~2~~2 \over 5~~7~~9}\) (\({1~~2~~2 \over 5~~7~~9}\):   \({2~~2~~1 \over 5~~7~~9}\) α) \({1~~3~~3\phantom{0} \over 2~~8~~10}\) 22
    pensa est⑩ (pensa est⑩:   pensa per 11 est 10 S)
    \({1~~2~~1~~0~~1~~3~~9\phantom{0}~~5\phantom{0}~~0\phantom{0}~~4\phantom{7} \over 2~~7~~7~~8~~9~~9~~10~~10~~10~~17}\) 274
    (pensa est 10 per 11 (⑪ R):   om. S) (⑪ R) (38513130 ⑦:   36513130 ② α) (\({1~~2~~3\phantom{0} \over 2~~9~~10}\):   \({1~~3~~3\phantom{0} \over 2~~9~~10}\) R) (\({1~~2~~2 \over 5~~7~~9}\):   \({2~~2~~1 \over 5~~7~~9}\) α) (pensa est⑩:   pensa per 11 est 10 S) :   om. V
  • 249potest:   potes A G F S
  • 250numeri:   om. S
  • 251per:   om. α
  • 252\({1~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0\phantom{7} \over 2~~2~~2~~3~~5~~5~~5~~6~~7~~7~~8~~9~~17}\):   \({1~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0\phantom{7} \over 2~~2~~2~~3~~5~~5~~6~~6~~7~~7~~8~~9~~17}\) F G R S   \({1~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0~~0\phantom{7} \over 7~~2~~2~~3~~5~~5~~6~~6~~7~~7~~8~~9~~17}\) A V

Liber Abbaci

Instrumenta

Capitulum sextum

Indice