29
Extractio de \({2 \over 9}\) \({3 \over 8}\) de \({2 \over 7}\) \({3 \over 5}\)57
Si autem \({2 \over 9}\) \({3 \over 8}\) de \({2 \over 7}\) \({3 \over 5}\) extrahere volueris,

|
2232 |
1505 |
\({2 \over 7}\) |
\({3 \over 5}\) |
\({2 \over 9}\) |
\({3 \over 8}\) |
residuum |
\({3~~6~~7~~2\phantom{0} \over 4~~7~~9~~10}\) |
|
\({2~~5~~20 \over 5~~7~~43}\) 1 |
|
\({1~~8~~20 \over 8~~9~~31}\) |
|
|
58 reperies prescripta 2232 et 1505 et extrahes 1505 de 2232, remanebunt 727, que prescripta ratione divide per \({1~~0~~0~~0\phantom{0} \over 4~~7~~9~~10}\); exibunt \({3~~6~~7~~2\phantom{0} \over 4~~7~~9~~10}\), ut in hac alia cernitur descriptione. Et si \({2 \over 7}\) \({3 \over 5}\) per \({2 \over 9}\) \({3 \over 8}\) dividere vis, divide 2232 per regulam de 1505, et si vis contrarium facies contrarium, et habebis optata ut in questione cernitur.