133
Incipit pars octava319 sexti capituli de multiplicatione partium numerorum cum ruptis
Si volueris multiplicare \({3 \over 5}\) de \({4 \over 7}\) 29, que sic scribuntur: \({4 \over 7}\) 29 \({3 \over 5}\), cum \({6 \over 11}\) de \({2 \over 3}\) 38, que sic

|
621 |
\({4 \over 7}\) 29 \({3 \over 5}\) |
696 |
\({2 \over 3}\) 38 \({6 \over 11}\) |
\({2~~2~~\phantom{1}2 \over 5~~7~~11}\) 374 |
|
|
320 scribuntur: \({2 \over 3\phantom{1}}\) 38 \({6 \over 11}\), describe questionem ut hic ostenditur et multiplica 29 per suam virgulam que est eis
321 retro, scilicet per
322 7 et adde 4; erunt 207, que multiplica per 3 que sunt super aliam virgulam que est ante ipsam, scilicet super 5: erunt 621, que pone super \({4 \over 7}\) 29 \({3 \over 5}\).
134
Similiter multiplica 38 per suam virgulam que est eis
323 retro, scilicet per 3 et adde 2; erunt 116, que multiplica per 6 que sunt super 11: erunt 696, que pone super \({2 \over 3}\) 38 \({6 \over 11}\). Et multiplica 621 per tertiam de 696, et divides per omnes reliquos ruptos utriusque lateris, scilicet per \({1~~0~~0\phantom{1} \over 5~~7~~11}\), et habebis pro summa quesite multiplicationis \({2~~2~~2\phantom{1} \over 5~~7~~11}\)
324 374.
135
De eodem
Item si \({1 \over 5}\) \({3 \over 4}\) de \({2~~5 \over 7~~9}\) 33, que sic scribuntur: \({2~~5 \over 7~~9}\) 33 \({1 \over 5}\) \({3 \over 4}\), volueris

|
|
40204 ⑧ |
|
\({2~~5 \over 7~~9}\) 33 \({1 \over 5}\) \({3 \over 4}\) |
|
210145 ⓪ |
|
\({1 \over 11}\) \({5 \over 6}\) 244 \({1~~3 \over 4~~7}\) |
\({2~~6~~0~~1~~4~~4\phantom{1} \over 3~~7~~7~~8~~9~~11}\) 3628 |
|
|
|
325 multiplicare per \({1~~3 \over 4~~7}\) de \({1 \over 11}\) \({5 \over 6}\) 244, que sic scribuntur: \({1 \over 11}\) \({5 \over 6}\) 244 \({1~~3 \over 4~~7}\), describe ea ut in hac margine cernitur et multiplica 33 per suam virgulam que est
326 eis
327 retro, scilicet per 9 et adde 5, que per 7 et adde 2: erunt 2116.
136
Deinde multiplica 3 que sunt super 4 per 5 et 1 quod est super 5 per 4: erunt 19, qui
328 est numerus ipsarum duarum virgularum que sunt ante ipsa 33; per que
329 19 multiplica 2116: erunt 40204, que pone super
330 \({2~~5 \over 7~~9}\) 33 \({1 \over 5}\) \({3 \over 4}\), quorum pensa per
331 13 ordine quo multiplicavimus accepta est 8; que 8 pone super 40204 in questione.
137
Item multiplica 244 per suas virgulas que sunt retro eis
332, scilicet per 6 et adde 5, que per 11 et adde multiplicationem de 1 quod est super 11 in 6: erunt 16165, que multiplica per numerum virgule que est ante ipsa 244, scilicet per 13 que surgunt ex multiplicatione de 3 que sunt super 7 in 4, ipso 1 superaddito quod est super 4; erunt 210145, que pone super 244 et suas virgulas.
138
Et super ipsa pone 0, quod est pensa ipsorum per 13, et multiplica 40204
333 per 210145 et divide summam multiplicationis per omnes ruptos qui sunt sub omnibus virgulis, et sic habebis quesitam multiplicationem.
139
Sed ut modus evitandi in hac retineatur multiplicatione, divides 40204 per 4 que sunt sub una prescriptarum virgularum: exibunt 10051, que serva, cum non possit ex eis amplius evitari. Item divide 210145 per 5 que sunt sub alia virgula: exibunt 42029, per que multiplica 10051 et divides per omnes alios ruptos
334; exibunt \({2~~6~~0~~1~~4~~4\phantom{1} \over 3~~7~~7~~8~~9~~11}\) 3628.
140
De eodem cum pluribus ruptis
Item si volueris multiplicare \({2~~3~~5 \over 7~~8~~9}\) de \({1 \over 13}\) \({2 \over 11}\) \({3 \over 5}\) 42 per \({1 \over 9}\),\({1 \over 8}\),\({5 \over 7}\) de \({2~~0~~3\phantom{1} \over 3~~5~~11}\) 331
335, describe questionem, et incipias multiplicare 42 per suas virgulas que sunt eis
336 retro: erunt 30644. Et accipe \({2~~3~~5 \over 7~~8~~9}\), et invenias numerum ipsorum ruptorum, scilicet multiplica 5 que sunt super 9 per 8 et adde 3, que per 7 et adde 2: erunt 303, per que multiplica 30644; erunt 9285132.
141
Deinde ut invenias numerum inferioris lateris, multiplicabis 331 per suam virgulam que est eis
337 retro, videlicet per 11, et addes 3 que sunt super ipsa 11, que multiplica per 5 et per 3 que
338 sunt sub eadem virgula
339 et desuper adde 2 que sunt super ipsa 3: erunt 54662.
142
Et reperias

|
9285132 |
\({1 \over 13}\) \({2 \over 11}\) \({3 \over 5}\) 42 \({2~~3~~5 \over 7~~8~~9}\) |
26183098 |
\({2~~0~~\phantom{1}3 \over 3~~5~~11}\) 331 \({1 \over 9}\) \({1 \over 8}\) \({5 \over 7}\) |
\({1~~5~~6~~3~~7~~7\phantom{0}~~7\phantom{0}~~4\phantom{1}~~3\phantom{1}~~7\phantom{3} \over 2~~7~~7~~9~~9~~10~~10~~11~~11~~13} 8112\phantom{32}\) |
|
|
340 numerum de \({1 \over 9}\) \({1 \over 8}\) \({5 \over 7}\), qui est 479, per que multiplica 54662: erunt 26183098, que pone super 331 et suas virgulas
341. Et multiplica 9285132 per 26183098 et divide per omnes ruptos qui sunt sub omnibus virgulis et evita inde ea que evitari poterunt, et habebis pro quesita multiplicatione, ut hic ostenditur, \({1~~5~~6~~3~~7~~7\phantom{0}~~7\phantom{0}~~4\phantom{1}~~3\phantom{1}~~7\phantom{3} \over 2~~7~~7~~9~~9~~10~~10~~11~~11~~13}\) 8112
342.