112 De rotulis qui venduntur pro tarenis269

[R:65r] Rotuli \({1 \over 9}\) \({3 \over 4}\)270 22 venduntur pro tarenis \({1 \over 8}\) \({2 \over 5}\)271 14; quantum
⑤ 581 823 ④
tar.
\({1 \over 8}\) \({2 \over 5}\) 14 \({1 \over 9}\) \({3 \over 4}\) 22
  215
\({1~~551~~\phantom{1}7 \over 2~~823~~20} 11\) \({1~~5 \over 2~~6}\) 17
272 valent ergo273 rotuli \({1~~5 \over 2~~6}\) 17? Describe questionem, et multiplica 22 per suas virgulas; erunt 823, que pone super \({1 \over 9}\) \({3 \over 4}\) 22. Deinde multiplica 14 per suas virgulas; erunt 581, que pone super \({1 \over 8}\) \({2 \over 5}\) 14. 113 Item multiplica 17274 per suas virgulas; erunt 215, que multiplica per 581: erunt 124915, que debes multiplicare per numeros qui sunt sub virgulis de 22, scilicet per 4 et per 9, et dividere275 summam per276 823 et per 5 et per 8 et per 2 et per 6 que sunt sub virgulis oppositorum277 numerorum, scilicet de 14 et de 17.

114 Sed ut imitemur subtilitatem evitandi quam ostendimus in multiplicationibus numerorum, relinquatur278 quod non multiplicetur 124915 per 4 neque per 3 que sunt de regula279 de ipsis 9; et relinquetur280 quod non dividetur281 per 2 et per 6, que totidem sunt. Sed multiplicabis 124915 per 3 que remanent de ipsis 9; exibunt 374745282, que restant dividenda283 per \({1~~0~~\phantom{8}0\phantom{3} \over 5~~8~~823}\)284, hoc est per \({1~~\phantom{8}0\phantom{3}~~\phantom{1}0 \over 2~~823~~20}\), videlicet ut habeamus 20 sub capite virgule super que venient grana: exibunt tareni \({1~~551~~\phantom{1}7 \over 2~~823~~20}\) 11. Potuimus enim dictum evitandi modum285 in quibusdam de suprascriptis negotiationibus observare, sed eum relinquimus ne forte impedirentur que in eis demonstrare volumus. Tamen in omnibus hic idem modus observandus est.

  • 269De rotulis qui venduntur pro tarenis:   om. R
  • 270\({3 \over 4}\):   \({1 \over 4}\) F
  • 271\({2 \over 5}\):   \({1 \over 5}\) A F S V   \({4 \over 5}\) G
  • 272
    ⑤ 581 (581:   5817 S) 823 ④ (④:   om. α R S)
    tar.
    \({1 \over 8}\) \({2 \over 5}\) (\({1 \over 8}\) \({2 \over 5}\):   \({1 \over 8}\) \({1 \over 5}\) S   ) 14 \({1 \over 9}\) \({3 \over 4}\) 22
    ③ (③:   om. F)
      215
    \({1~~551~~\phantom{1}7 \over 2~~823~~20} 11\) (\({1~~551~~\phantom{1}7 \over 2~~823~~20} 11\):   om. F   ) \({1~~5 \over 2~~6}\) 17
    (581:   5817 S) (④:   om. α R S) (\({1 \over 8}\) \({2 \over 5}\):   \({1 \over 8}\) \({1 \over 5}\) S   ) (③:   om. F) (\({1~~551~~\phantom{1}7 \over 2~~823~~20} 11\):   om. F   ) :   om. V
  • 273ergo:   om. F
  • 274multiplica 17:   multiplica 12 A V   12 multiplica G
  • 275dividere:   divide S
  • 276summam per:   per summam α
  • 277oppositorum ~ 17:   de 14 et de 17 que sunt oppositorum numerorum R
  • 278relinquatur:   relinquetur F   
  • 279de regula:   sub regula ex sub de ipsis R   
  • 280relinquetur:   relinquatur R
  • 281dividetur:   dividatur R   
  • 282374745 Giusti   374475 ω
  • 283dividenda:   ut dividenda α F S
  • 284\({1~~0~~\phantom{8}0\phantom{3} \over 5~~8~~823}\):   \({5~~0~~\phantom{8}0\phantom{3} \over 5~~8~~823}\) A V   \({1~~0~~0~~\phantom{8}0\phantom{3} \over 5~~8~~8~~823}\) G   
  • 285evitandi modum:   modum evitandi R

Liber Abbaci

Instrumenta

Capitulum octavum

Indice