98 Explicit pars quinta sexti capituli. Incipit sexta de multiplicatione ruptorum253 sine sanis

Si volueris multiplicare \({1 \over 3}\) per \({1 \over 4}\), multiplica 1 quod est super 3 per 1 quod est super 4; erit 1, quod divide per 3 et per 4 que sunt sub virgulis, hoc est per \({1~~0 \over 3~~4}\) vel per \({1~~0 \over 2~~6}\): exibunt \({1~~0 \over 3~~4}\) vel \({1~~0 \over 2~~6}\), hoc est una pars de duodecim partibus unius integri; unde potes cognoscere quod tantum est si multiplicaveris \({1 \over 3}\) per \({1 \over 4}\), quantum si acceperis \({1~~0 \over 3~~4}\) vel \({1~~0 \over 4~~3}\). 99 Et hoc idem intelligas de omnibus ruptis, quia semper multiplicatio cuiuslibet rupti in quemlibet254 ruptum255 facit quantum acceptio unius illorum ex alio. Quia cum multiplicatur 1 per \({1 \over 4}\), tunc semel accipitur256 \({1 \over 4}\); ergo cum multiplicatur tertia per quartam, tunc accipitur tertia quarte et257 sic ex multiplicatione de tertia258 in quartam259 provenit duodecima.

100 De eodem260

Item si volueris multiplicare \({2 \over 3}\) per \({3 \over 4}\), multiplica 2 que sunt super 3 per 3 que sunt super 4; erunt 6, que divide per 3 et per 4 que sunt sub virgulis: exibit261 \({1 \over 2}\) unius integri.

101 De eodem262

Item263 si volueris multiplicare \({3 \over 7}\) per \({4 \over 9}\), multiplica 3 per 4 que264 sunt super265 virgulis266; erunt 12, que divide per 7 et per 9 que sunt sub virgulis: exibunt \({5~~1 \over 7~~9}\) unius integri, hoc est duodecim partes de sexaginta tribus partibus unius integri, que sunt quattuor partes de 21 unius integri. Et hoc invenies267 duplici268 modo. Primus quidem modus est ut dividas 12 et 63 per 3, ideo quia hanc divisionem unusquisque eorum integraliter recipit: exibunt 4 et 21. Unde si diviseris 4 per 21, exibunt \({4 \over 21}\) unius integri. 102 Vel aliter: debuisti dividere 12 per \({1~~0 \over 7~~9}\). Divide prius 12 per 3: exibunt 4. Similiter divide 9 per 3; exibunt 3, in quibus etiam et in 7 divides 4: exibunt \({1~~1 \over 3~~7}\), hoc est septima pars unius integri et insuper tertia pars ipsius septime partis, quod tantum269 est quantum quattuor partes de 21.

103 De eodem cum duobus270 ruptis sub una virgula

Si volueris multiplicare \({1~~4 \over 2~~7}\) per \({2~~3 \over 3~~5}\), describe questionem ut hic ostenditur, et
  9
  \({1~~4 \over 2~~7}\)
  11
  \({2~~3 \over 3~~5}\)
\({5~~4\phantom{0} \over 7~~10}\)  
271 multiplicabis 4 que sunt super 7 de superiori virgula per 2 que sunt sub eadem virgula, et adde 1 quod est super 2: erunt 9, que pone super \({1~~4 \over 2~~7}\). Similiter272 multiplica 3 que sunt super 5 de inferiori virgula per 3 que sunt sub eadem virgula et adde 2 que sunt super ipsa 3: erunt 11, que pone super \({2~~3 \over 3~~5}\). Et multiplicabis 9 per 11: erunt 99, que divides per 2 et per 7 et per 3 et per 5 que sunt sub virgulis; exibunt \({5~~4\phantom{0} \over 7~~10}\) unius integri.

104 De eodem cum tribus ruptis sub una virgula

Item si volueris multiplicare tres ruptos sub una virgula per tres ruptos
59
  \({1~~5~~3\phantom{1} \over 2~~8~~11}\)
202
  \({1~~4~~7\phantom{3} \over 3~~9~~13}\)
\({1~~2~~5~~5\phantom{1}~~2\phantom{3} \over 3~~8~~9~~11~~13}\)  
273 qui274 sint sub alia, ut dicamus \({1~~5~~3\phantom{1} \over 2~~8~~11}\) per \({1~~4~~7\phantom{3} \over 3~~9~~13}\), describe questionem, et multiplicabis 3 que sunt275 super 11 per suam virgulam, hoc est per 8 et adde 5, que276 per277 2 et adde 1: erunt 59, que278 pone super \({1~~5~~3\phantom{1} \over 2~~8~~11}\). 105 Deinde multiplica 7 que sunt279 super 13 per suam virgulam, hoc est per 9 et adde 4, que280 per 3 et adde 1: erunt 202, que pone281 super \({1~~4~~7\phantom{3} \over 3~~9~~13}\), et multiplica 59 per 202 et divide per omnes numeros qui sunt sub utraque282 virgula, quorum aptatio est \({1~~0~~0~~0\phantom{1}~~0\phantom{3} \over 6~~8~~9~~11~~13}\); exibunt \({2~~2~~5~~5\phantom{1}~~2\phantom{3} \over 6~~8~~9~~11~~13}\).

106 De eodem cum duabus virgulis

Si volueris multiplicare \({1 \over 4}\) \({2 \over 3}\) per \({1 \over 6}\) \({3 \over 5}\), describe questionem ut hic ostenditur et
  11
    \({1 \over 4}\) \({2 \over 3}\)
  23
  \({1 \over 6}\) \({3 \over 5}\)
\({1~~0~~7\phantom{0} \over 4~~9~~10}\)    
283 multiplica 2 que sunt super 3 per 4 que sunt sub secunda virgula: erunt 8. Item multiplica 1 quod est super ipsa 4 per 3 que sunt sub prima virgula: erunt 3 que adde cum 8; erunt 11, que pone super \({1 \over 4}\) \({2 \over 3}\). 107 Deinde accedas ad \({1 \over 6}\) \({3 \over 5}\), et multiplica 3 que sunt super 5 per 6 et 1 quod est super 6 per 5 et adde insimul: erunt 23, que pone super \({1 \over 6}\) \({3 \over 5}\). Et multiplica 11 per 23: erunt 253, que divide per omnes numeros qui sunt sub virgulis.

108 De eodem cum duobus ruptis sub unaquaque virgula284

Et si volueris ponere duos ruptos sub unaquaque
  470 ②
  \({1~~3 \over 4~~8}\) \({1~~4 \over 2~~7}\)
  1407 ③
\({1~~2\phantom{1} \over 6~~11}\) \({1~~5 \over 3~~9}\)
\({2~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\)  
285 virgula, ut \({1~~3 \over 4~~8}\) \({1~~4 \over 2~~7}\) cum \({1~~2\phantom{1} \over 6~~11}\) \({1~~5 \over 3~~9}\), describe questionem et multiplica 4286 que sunt super 7 per suam virgulam, hoc est per 2 et adde 1: erunt 9, que multiplica per 8 et per 4 que sunt sub secunda virgula eiusdem lateris; erunt 288, que serva. Et multiplica 3 que sunt super 8 per suam virgulam, scilicet per 4 et adde 1: erunt 13, que multiplica per 2 et per 7 que sunt sub prima virgula; erunt 182, que adde cum 288: erunt 470, que pone super ipsas virgulas superiores. 109 Et multiplica similiter eodem modo reliquas duas virgulas inferiores, et habebis in eorum multiplicatione 1407, que pone super ipsas virgulas. Et multiplica 470287 per 1407 et divide per omnes numeros qui sunt sub virgulis, et habebis quesitam multiplicationem. Tamen si vis potes inde288 evitare, scilicet divides 1407 per 7: exibunt 201, que divide per 3; exibunt 67, que multiplica per 470: erunt 31490, que divide per omnes numeros qui sunt sub virgulis preter quam per 7 et per 3 in quibus dividisti 1407. Et aptabis prescriptos ruptos sub una virgula: exibunt \({2~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\)289. Per hunc enim modum potes multiplicare si sub virgulis ponerentur tres rupti vel plures.

  • 253ruptorum:   ruptorum vel fractorum R V   ruptorum vel ruptorum A G
  • 254quemlibet:   quolibet ( antecorr. S) R
  • 255ruptum:   rupto ( ante corr. S) α F R
  • 256semel accipitur:   accipitur semel R
  • 257et:   om. R
  • 258tertia:   tertiam R
  • 259quartam:   quarta α R S
  • 260De eodem:   om. S
  • 261exibit:   exibunt R
  • 262De eodem:   om. S
  • 263Item:   Tem F
  • 264que:   qui ( ante corr. S) α F R
  • 265super:    ex sub F G   sub A V
  • 266virgulis:   virgulas R
  • 267invenies:   invenitur R
  • 268duplici:   duplia F
  • 269tantum:   totum R
  • 270duobus:   tribus F
  • 271
      9
      \({1~~4 \over 2~~7}\)
      11
      \({2~~3 \over 3~~5}\)
    \({5~~4\phantom{0} \over 7~~10}\)  
    :   om. V
  • 272Similiter:   Et similiter S
  • 273
    59
      \({1~~5~~3\phantom{1} \over 2~~8~~11}\)
    202
      \({1~~4~~7\phantom{3} \over 3~~9~~13}\)
    \({1~~2~~5~~5\phantom{1}~~2\phantom{3} \over 3~~8~~9~~11~~13}\) (\({1~~2~~5~~5\phantom{1}~~2\phantom{3} \over 3~~8~~9~~11~~13}\):   \({1~~2~~5~~5\phantom{1}~~2\phantom{3} \over 3~~8~~9~~11~~13}\) 0 F)  
    (\({1~~2~~5~~5\phantom{1}~~2\phantom{3} \over 3~~8~~9~~11~~13}\):   \({1~~2~~5~~5\phantom{1}~~2\phantom{3} \over 3~~8~~9~~11~~13}\) 0 F) :   om. V
  • 274qui Giusti   que ω
  • 275que sunt:   qui est α F
  • 276que:   quem A F S V
  • 277per:   om. A
  • 278que:   quem ( ante corr. S) α F
  • 279que sunt:   que erunt α   que est F   qui est ante corr. S
  • 280que:   quem ( ante corr. S) G V
  • 281que pone:   quem pone ( ante corr. S) α
  • 282utraque:   unaquaque R
  • 283
      11 ④ (④:   om. R)
        \({1 \over 4}\) \({2 \over 3}\)
      23 ② (②:   om. R)
    ① (①:   om. F R)   \({1 \over 6}\) \({3 \over 5}\)
    \({1~~0~~7\phantom{0} \over 4~~9~~10}\) (\({1~~0~~7\phantom{0} \over 4~~9~~10}\):   \({1~~0~~7\phantom{0} \over 4~~9~~10}\) 0 (\({1 \over 4}\) \({0 \over 9}\) \({7 \over 10}\) 0 A) α F R)    
    (④:   om. R) (②:   om. R) (①:   om. F R) (\({1~~0~~7\phantom{0} \over 4~~9~~10}\):   \({1~~0~~7\phantom{0} \over 4~~9~~10}\) 0 (\({1 \over 4}\) \({0 \over 9}\) \({7 \over 10}\) 0 A) α F R) (\({1 \over 4}\) \({0 \over 9}\) \({7 \over 10}\) 0 A) :   om. V
  • 284De eodem cum duobus ruptis sub unaquaque virgula (om. A F G S):   om. V
  • 285
      470 ② (②:   ⑦ S)
      \({1~~3 \over 4~~8}\) \({1~~4 \over 2~~7}\)
      1407 ③
    ⑥ (⑥:   om. F S) \({1~~2\phantom{1} \over 6~~11}\) \({1~~5 \over 3~~9}\)
    \({2~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\) (\({2~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\):   \({2~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\) 0 α F R)  
    (②:   ⑦ S) (⑥:   om. F S) (\({2~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\):   \({2~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\) 0 α F R) :   om. V
  • 2864:   8 α
  • 287470:   407 α
  • 288inde:   om. α
  • 289\({2~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\):   \({1~~0~~0~~1~~9\phantom{1} \over 6~~8~~8~~9~~11}\) α F S

Liber Abbaci

Instrumenta

Capitulum sextum

Indice