104
Extractio de \({1 \over 4}\) \({1 \over 3}\) 15 de \({1 \over 7}\) \({3 \over 5}\) 322204
Et si \({1 \over 4}\) \({1 \over 3} 15\) de \({1 \over 7}\) \({3 \over 5}\) 322 extrahere volueris, extrahe 6545 de 135552; remanebunt 129007, que divides suprascripta demonstratione per \({1~~0~~\phantom{1}0 \over 6~~7~~10}\): exibunt \({1~~4~~\phantom{1}1 \over 6~~7~~10} 307\) pro residuo quesite extractionis. Aliter: extrahe 15 de 322
205; remanebunt 307, et extrahe \({1 \over 4}\) \({1 \over 3}\) de \({1 \over 7}\) \({3 \over 5}\); remanebunt \({1~~4~~1 \over 6~~7~~10}\), que adde cum 307: erunt \({1~~4~~\phantom{1}1 \over 6~~7~~10}\) 307, ut prediximus. Verum si \({1 \over 7}\) \({3 \over 5}\) 322 per \({1 \over 4}\) \({1 \over 3}\) 15 dividere volueris, divide 135552 per regulam de 6545; exibunt \({2~~6~~\phantom{1}0~~12 \over 5~~7~~11~~17}\) 20 pro quesita divisione.