275
De torscello
Si torscellus, qui est canne 60 Provincie, hoc est de palmis 8, venditur pro libris 35,

|
£ |
can. |
35 |
60 |
s. |
|
\({2~~11 \over 3~~20}\) |
1 |
|
|
737 et queratur quantum valeat canna una, describe questionem ut hic ostenditur
738, et multiplica 1 per 35 et divide per regulam de 60, que est \({1~~\phantom{1}0 \over 6~~10}\), vel \({1~~\phantom{1}0 \over 3~~20}\) quod est melius hic, ideo quia indigemus habere \({1 \over 20}\) in capite virgule: exibunt \({2~~11 \over 3~~20}\), hoc est soldi 11 et denarii 8, ut in questione ostenditur
739. Et ex hoc quidem manifestum est quod quot fuerint libre pretii torscelli
740, tot tertias unius soldi valet canna una.
Item si eadem ratione queres quantum valeat palmus, facies de palmo partem

|
£ |
can. |
35 |
60 |
d. s. |
pal. |
\({1~~\phantom{1}5~~\phantom{1}1 \over 2~~12~~20}\) |
\({1 \over 8}\) |
|
|
742 unius canne, eruntque
743 \({1 \over 8}\). Describe ergo questionem sic, et multiplica 1 quod est super 8 per 35; erunt 35, que divide per 60 et per 8
[V:46r] que sunt sub virgula, coaptans ea sic: \({1~~\phantom{1}0~~\phantom{1}0 \over 2~~12~~20}\), ideo
744 quia locus in quo ponenda est summa est sub libris, videlicet sub 35: exibit
745 \({1~~\phantom{1}5~~\phantom{1}1 \over 2~~12~~20}\), hoc est denarii \({1 \over 2}\) 17. Ex
746 hoc ergo manifestum est quia quot libras valet torscellus, tot obulos valet palmus.
Item torscellus venditur pro libris \({9 \over 20}\) 37, et queratur quantum valeant canne

|
749 £ |
can. |
\({9 \over 20}\) 37 |
60 |
d. s. £ |
301 |
\({1~~4~~\phantom{1}0~~\phantom{1}5~~17 \over 2~~8~~10~~12~~20}\) 5 |
\({1~~3 \over 4~~8}\) 9 |
|
|
748 9 et palmi \({1 \over 4}\) 3, hoc est canne \({1~~3 \over 4~~8}\) 9. Describe questionem sic, et multiplicabis \({1~~3 \over 4~~8}\) 9 per \({9 \over 20}\) 37 et divides per 60: exibunt libre \({1~~4~~\phantom{1}0~~\phantom{1}5~~17 \over 2~~8~~10~~12~~20}\) 5, ut in questione ostenditur
749.