115
De rotulis et eorum partibus286
Item rotuli \({1~~3~~\phantom{1}2 \over 2~~8~~11}\) 13 venduntur pro bizantiis \({1 \over 5}\) \({1 \over 4}\) \({1 \over 3}\) 7; quantum

|
⑧ 467 |
2327 ⑤ |
b. |
℞ |
\({1 \over 5}\) \({1 \over 4}\) \({1 \over 3}\) 7 |
\({1~~3~~\phantom{1}2 \over 2~~8~~11}\) 13 |
① |
⑧ |
|
26 |
\({3~~3~~4~~\phantom{1}88~~1~~3 \over 5~~5~~7~~179~~3~~8}\) |
\({1 \over 7}\) \({3 \over 5}\) |
|
|
287 valent ergo \({1 \over 7}\) \({3 \over 5}\) unius rotuli? Multiplica 13 per suam virgulam: erunt 2327, que pone super 13
288. Deinde multiplica 7 per suas virgulas: erunt 467, que pone super 7. Post hec multiplica 3 que sunt super 5 per 7 et 1 quod est super 7 in 5: erunt 26, que pone super \({1 \over 7}\) \({3 \over 5}\).
116
Et multiplica tertiam decimam de 26 per 467 et per numeros qui sunt sub virgula de
289 13,
[V:38v] scilicet per 2 et per 8 et per 11: erunt 164384, que divide per tertiam decimam de 2327, hoc est per 179, et per numeros qui sunt sub virgulis numerorum qui sunt ex adverso.
[G:67v] 117
Tamen cum in eis regulam de 24 accipere non possumus, ideo quia non habemus ex ea in ipsis nisi tantum \({1 \over 4}\) \({1 \over 3}\), unde minuit nobis \({1 \over 2}\), addatur 2 in divisione et multiplicentur 164384 per 2; erunt 328768, que divide per \({1~~0~~0~~\phantom{17}0~~0~~0 \over 5~~5~~7~~179~~3~~8}\)
290: exibunt \({3~~3~~4~~\phantom{1}88~~1~~3 \over 5~~5~~7~~179~~3~~8}\)
291.