176 De rotulis gerovi et forfori460

Item rotuli gerovi \({1 \over 6}\) \({2 \over 5}\) 13 pro bizantiis \({1 \over 7}\) \({1 \over 5}\) 3; quot rotulos forforinos habuero pro bizantiis \({1 \over 4}\) 2? Quia venditio sit de rotulis gerovinis et quesitio sit de rotulis forforinis, ideo de rotulis \({1 \over 6}\) \({2 \over 5}\) 13 gerovi faciendi sunt rotuli forfori, hoc est multiplica eos461 per \({1 \over 6}\) 2, et venientem summam pone in questione pro venditione.

177 Et ut evitemus laborem dicte multiplicationis, pone \({1 \over 6}\) 2 ante rotulos \({1 \over 6}\) \({2 \over 5}\) 13 ut superius in similibus facere demostravimus, et describe questionem sic, et multiplica 2 per 6 et adde 1; erunt 13, que pone super \({1 \over 6}\) 2. Deinde multiplica 13 per suas virgulas; erunt 407, et multiplica 3 per suas virgulas; erunt 117. 178 Post hec462 multiplica 2 per 4 et adde 1; erunt 9, que pone super \({1 \over 4}\) 2, et multiplica 9 per numeros qui sunt ei ex adverso, videlicet per463 13 et
b. for.  
117 407 13
\({1 \over 7}\) \({1 \over 5}\) 3 \({1 \over 6}\) \({2 \over 5}\) 13 \({1 \over 6}\) 2
9    
\({1 \over 4}\) 2 \({1~~2~~\phantom{1}9 \over 2~~6~~12}\) 19
464 per 407; erunt 47619, que multiplica per ruptos qui sunt sub 117, videlicet per 5 et per 7, et divide summam465 per regulam de [G:72r] 117, que est \({1~~0 \over 9~~13}\), et per numeros qui sunt sub virgulis oppositorum numerorum, videlicet per 6 que sunt sub 13 et per 5 et per 6 que sunt sub 407 et per 4 que sunt sub 9. 179 Verum si laborem multiplicandi et dividendi evitare volueris, considera cum diximus multiplica 9 per 13, et relinque eorum multiplicationem, quod non multiplices ea, et non divides per 9 et per 13 que sunt in virgula divisionis. Ergo remanet tantum ut multiplices 407 per ruptos qui sunt sub 117, et remanet ut divides466 per \({1~~0~~0~~0 \over 2~~5~~8~~9}\). 180 De quibus relinques iterum quod non multiplicabis [A:27v] per 5 que sunt sub virgula sub 117 et non divides per 5 que sunt sub virgula divisionis. Ergo multiplicabis 407 per 7 que sunt sub virgula sub 117 et divides per \({1~~0~~0 \over 2~~8~~9}\), hoc est per \({1~~0~~\phantom{1}0 \over 2~~6~~12}\) ut habeamus uncias super 12: exibunt rotuli \({1~~2~~\phantom{1}9 \over 2~~6~~12}\) 19 forfori, ut superius in descriptione ostenditur467.

181 De eodem in contrario468

[S:49r] Item si dixerit quod rotuli \({1 \over 9}\) \({2 \over 5}\) 12 forfori valent bizantios \({3 \over 4}\) 4, et quot rotulos gerovinos quis pro karatis \({2 \over 5}\) 17469, hoc est pro \({2~~17 \over 5~~24}\) unius bizantii habuerit queratur; quia unusquisque rotulus forforinus est \({6 \over 13}\) unius rotuli gerovini, ponende sunt \({6 \over 13}\) ante rotulos \({1 \over 9}\) \({2 \over 5}\) 12 forforinos, ut in hac descriptione ostenditur. 182
19 b. 563  
\({3 \over 4}\) 4 \({1 \over 9}\) \({2 \over 5}\) 12 \({6 \over 13}\)
87    
\({2~~17 \over 5~~24}\) \({1~~3~~12~~10~~10 \over 5~~10~~13~~19~~12}\)
470 Et accipies \({1 \over 9}\) \({2 \over 5}\) 12 et multiplicabis 12 per suas virgulas: erunt 563. Deinde accede ad \({3 \over 4}\) 4, et multiplicabis 4 per 4 et addes 3: erunt 19. Item multiplicabis 17 que sunt super 24 per 5 et adde 2: erunt 87, et multiplicabis 87 per 6 que sunt ei ex adverso super 13, que per 563, que per 4 que sunt sub virgula sub 19, et divides [R:69v] summam per 19 et per numeros qui sunt sub virgulis oppositorum numerorum, videlicet per 5 et per 9 et per 13 et per 5 et per 24, hoc est per \({1~~0~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0 \over 5~~9~~10~~13~~19~~12}\), et evitabis quod evitare poteris, et [V:41v] habebis pro quesita quantitate \({1~~\phantom{1}3~~12~~10~~10 \over 5~~10~~13~~19~~12}\)471 unius rotuli gerovini.

  • 460De rotulis gerovi et forfori:   om. R
  • 461eos:   om. R
  • 462hec:   hoc R
  • 463per:   om. F
  • 464
    b. for.  
    117 407 13
    \({1 \over 7}\) \({1 \over 5}\) 3 \({1 \over 6}\) \({2 \over 5}\) 13 \({1 \over 6}\) 2
    9    
    \({1 \over 4}\) 2 \({1~~2~~\phantom{1}9 \over 2~~6~~12}\) 19
    :   om. G V
  • 465summam:   per summam F
  • 466divides:   dividas R
  • 467forfori, ut superius in descriptione ostenditur:   om. R
  • 468De eodem in contrario:   om. R
  • 46917:   12 α
  • 470
    19 b. 563  
    \({3 \over 4}\) 4 \({1 \over 9}\) \({2 \over 5}\) 12 \({6 \over 13}\)
    87 (87:   om. S)    
    \({2~~17 \over 5~~24}\) (\({2~~17 \over 5~~24}\):   \({2~~7 \over 5~~24}\) A) \({1~~3~~12~~10~~10 \over 5~~10~~13~~19~~12}\) (\({1~~3~~12~~10~~10 \over 5~~10~~13~~19~~12}\):   \({1~~3~~12~~10~~10 \over 5~~10~~13~~19~~10}\) A   \({1~~3~~2~~10~~10 \over 5~~10~~13~~19~~12}\) S)
    (87:   om. S) (\({2~~17 \over 5~~24}\):   \({2~~7 \over 5~~24}\) A) (\({1~~3~~12~~10~~10 \over 5~~10~~13~~19~~12}\):   \({1~~3~~12~~10~~10 \over 5~~10~~13~~19~~10}\) A   \({1~~3~~2~~10~~10 \over 5~~10~~13~~19~~12}\) S) :   om. G V
  • 471\({1~~\phantom{1}3~~12~~10~~10 \over 5~~10~~13~~19~~12}\):   \({1~~\phantom{1}3~~\phantom{1}2~~10~~10 \over 5~~10~~13~~19~~12}\) α F S

Liber Abbaci

Instrumenta

Capitulum octavum

Indice