72
De pondere casei pisano145
Pondus casei, quod pensat centenaria 22, hoc est libras 2200, venditur pro libris 24; queritur quantum valent libre 86. Describe questionem et multiplica 24 per 86; erunt 2064, que divide per regulam de 2200, hoc est per \({1~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0 \over 2~~10~~10~~11}\); tamen fac \({1 \over 20}\) de \({1~~\phantom{1}0 \over 2~~10}\) ut habeamus ipsam in virgula sic: \({\phantom{1}1~~\phantom{1}0~~\phantom{1}0 \over 10~~11~~20}\).
73
Et cum non habeamus 12 in hac divisione, multiplicetur

|
③ £ |
l. |
24 |
2200 |
pensa per 7 est ② |
② |
|
|
\({\phantom{1}8~~\phantom{1}1~~\phantom{1}9~~18 \over 10~~11~~12~~20}\) |
86 |
|
|
146 2064 per 12 et iungatur 12 sub virga divisionis, quia cum adduntur
147 12 sub virga divisionis, tunc multiplicatur divisor per 12; quare multiplicandus est similiter dividendus
148 numerus per 12, ut proportio
149 dividendi
[F:37v] ad divisorem fiat eadem que erat prius; exibunt
150 \({\phantom{1}8~~\phantom{1}1~~\phantom{1}9~~18 \over 10~~11~~12~~20}\)
151.
Item pondus casei, hoc est libre 2200, valent libras \({11 \over 20}\) 18; quantum valent
[R:62v] ergo libre 100? Hanc autem questionem non indiget scribere, ideo quia 100 est \({1 \over 22}\) de 2200: quare non indiget aliud, nisi ut dividatur dictum pretium ponderis per regulam de 22, hoc est in \({1~~\phantom{1}0 \over 2~~11}\), quod sic facere potes:
75
accipe \({1 \over 2}\) de libris 18 et
153 soldis 11; erunt libre 9 et soldi \({1 \over 2}\) 5
154, de quibus fac soldos: erunt soldi
[A:24v] 185 et denarii 6, quos divide per 11; exibunt soldi
155 16 et remanent soldi
156 9 et denarii 6 ad dividendum in 11
157, de quibus fac denarios: erunt denarii 114, quos divide per 11; exibunt denarii \({4 \over 11}\) 10, et tot valet centenarium casei, videlicet soldos
158 16 et
159 denarios \({4 \over 11}\) 10.
76
De eodem pro libris160
Item pondus valet libras \({13 \over 20}\) 19; quantum valent ergo libre 783? Describe questionem, et multiplica 19 per 20 et adde 13; erunt soldi 393, quos multiplica per 783: erunt 307719, que

|
① £ |
l. |
393 |
|
\({13 \over 20}\) 19 |
2200 |
① |
⑥ |
\({\phantom{1}4~~\phantom{1}1~~\phantom{1}5~~10~~19 \over 10~~10~~11~~12~~20}\) 6 |
783 |
|
|
161 dividere debes per regulam de 2200 et per 20 que sunt sub virgula, hoc est per \({1~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0 \over 2~~10~~10~~11~~20}\). Sed ut habeamus 12 in virgula, multiplica 307719 per 6; que 6 coaptabis
162 cum 2 que sunt in virgula, et habebis 12 in ipsa virgula sic: \({\phantom{1}1~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0 \over 10~~10~~11~~12~~20}\): exibunt libre \({\phantom{1}4~~\phantom{1}1~~\phantom{1}5~~10~~19 \over 10~~10~~11~~12~~20}\) 6.