59
De centenario pannorum118
Item canne 100 pannorum valent libras \({11 \over 20}\) 15; quantum valent ergo canne \({5 \over 8}\) 27, hoc est canne 27 et brachia \({1 \over 2}\) 2? Descripta itaque questione, multiplica 15 per 20 et adde 11: erunt soldi 311, quos pone super 15.
60
Item multiplica 27 per 8 et adde 5; erunt 221, que pone super 27, et multiplica 311 per 221: erunt 68731, que deberemus
119 
|
③ £ |
can. |
311 |
|
\({11 \over 20}\) 15 |
100 |
① |
④ |
pensa per 7 |
221 |
\({1~~6~~9~~10~~5 \over 2~~10~~10~~12~~20}\) 4 |
\({5 \over 8}\) 27 |
|
|
120 multiplicare per 12 ut habeamus ea in virgula, nisi quia habemus in divisione 8, scilicet ea que sunt sub virgula post cannas
[F:37r] 27, quorum regula est \({1~~0 \over 2~~4}\); quare triplicabimus 4 et habebimus 12 in divisione.
61
Unde multiplicentur
121 ipsa 68731 per 3, quia
122 cum triplicatur divisor
123 triplicandus est numerus dividendus
124; erunt 206193, que divide per 2 que remanent de regula de 8, extractis
125 videlicet inde 4, et per 100 et per 12 et per 20, hoc est per \({1~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0 \over 2~~10~~10~~12~~20}\); exibunt libre \({1~~\phantom{1}6~~\phantom{1}9~~10~~\phantom{1}5 \over 2~~10~~10~~12~~20}\) 4, quorum pensa per septenarium est 1
126, ut in hac descriptione cernitur.
[G:63v] 62
De centenario piperis
Item centenarium piperis valet libras \({9 \over 20}\) 11; quantum

|
⑤ £ |
l. |
229 |
|
\({9 \over 20}\) 11 |
100 |
① |
③ |
pensa per 7 |
2229 |
\({1~~\phantom{1}0~~\phantom{1}1~~\phantom{1}4~~\phantom{1}6 \over 4~~10~~10~~12~~20}\) 5 |
\({1~~\phantom{1}5 \over 4~~12}\) 46 |
|
|
127 valent ergo libre \({1~~\phantom{1}5 \over 4~~12}\) 46, hoc est libre 46 et uncie \({1 \over 4}\) 5? Describe questionem, et multiplica 11 per 20 et adde 9; erunt 229, que pone super 11. Item multiplica 46 per 12 et adde 5, que per 4 et adde 1; erunt 2229, que pone super 46.
63
Et multiplica 229 per 2229; erunt 510441 que divide per 100 et per 20 et per \({1~~\phantom{1}0 \over 4~~12}\), hoc est per \({1~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0~~\phantom{1}0 \over 4~~10~~10~~12~~20}\): exibunt libre \({1~~\phantom{1}0~~\phantom{1}1~~\phantom{1}4~~\phantom{1}6 \over 4~~10~~10~~12~~20}\) 5 pro pretio illarum librarum \({1~~\phantom{1}5 \over 4~~12}\) 46, quorum pensa per septenarium est 1.
64
Item centenarium valet libras 12 et soldos 13 et denarios 5, hoc est

|
③ £ |
unc. |
3041 |
|
\({5~~13 \over 12~~20}\) 12 |
1200 |
③ |
① |
pensa per 7 |
211 |
\({5~~5~~2~~\phantom{1}5~~\phantom{1}8~~\phantom{1}2~~\phantom{1}1 \over 6~~8~~9~~10~~10~~12~~20}\) |
\({1 \over 9}\) \({3 \over 4}\) 5 |
|
|
128 libras \({\phantom{1}5~~13 \over 12~~20}\) 12; quantum valent
129 ergo uncie \({1 \over 9}\) \({3 \over 4}\) 5? Quamvis in hac questione sint ex genere mercis libre 100 et uncie \({1 \over 9}\) \({3 \over 4}\) 5, tamen non sunt
130 unius ponderis, quia 100 sunt libre et \({1 \over 9}\) \({3 \over 4}\) 5 sunt uncie.
65
Quare de libris 100 faciende sunt uncie: erunt 1200, et tunc erunt ambe similes. Et erit tunc talis questio, videlicet quod uncie 1200 valent libras \({5~~13 \over 12~~20}\) 12; quid valent ergo uncie \({1 \over 9}\) \({3 \over 4}\) 5? Quam questionem ut docuimus scribe, et multiplica 12 per suam virgulam: erunt denarii 3041, quos pone super libras 12.
66
Item multiplica 5 per suas virgulas
131: erunt 211, que pone super \({1 \over 9}\) \({3 \over 4}\) 5, et multiplica 211 per 3041; erunt 641651, que divide per 1200 et per 4 et per 9 et per \({\phantom{1}1~~\phantom{1}0 \over 12~~20}\) optime
[R:62r] in una virgula aptata: exibit
132 \({5~~5~~2~~\phantom{1}5~~\phantom{1}8~~\phantom{1}2~~\phantom{1}1 \over 6~~8~~9~~10~~10~~12~~20}\)
133 pro pretio quesitarum unciarum, ut in hac descriptione cernitur.