80
Extractio de \({1 \over 3}\) 12 de \({3 \over 4}\) 126160
Verum si \({1 \over 3}\) 12 de \({3 \over 4}\) 126 extrahere volueris, describes questionem ut supra et

|
1521 |
148 |
\({3 \over 4}\) 126 |
\({1 \over 3}\) 12 |
residuum extractionis |
\({5 \over 12}\) 114 |
|
|
161 reperies prescripta 148 et 1521, et
162 extrahes 148 de 1521; remanebunt duodecime 1373, quas
163 divide suprascripta ratione per 12, exibunt integra \({5 \over 12}\) 114 pro residuo dicte extractionis, ut in questione ostenditur.
81
Vel aliter: extrahe integra de integris, videlicet 12 de 126; remanent 114. Deinde extrahe \({1 \over 3}\) de \({3 \over 4}\); remanent \({5 \over 12}\), quas adde cum 114; erunt \({5 \over 12}\) 114 similiter.
82
Et si dividere volueris \({3 \over 4}\) 126 per \({1 \over 3}\) 12, divides 1521 per regulam de 148
164,

|
1521 |
148 |
\({3 \over 4}\) 126 |
\({1 \over 3}\) 12 |
divisio maioris per minorem |
\({1~~10 \over 4~~37}\) 10 |
|
|
165 que est \({1~~0\phantom{7} \over 4~~37}\), exibunt \({1~~10 \over 4~~37}\) 10 pro quesita divisione, ut in sua demonstratur descriptione
166.
83
Item si
167 minorem per maiorem dividere volueris, scilicet \({1 \over 3}\) 12 per \({3 \over 4}\) 126
168,

|
1521 |
148 |
\({3 \over 4}\) 126 |
\({1 \over 3}\) 12 |
divisio minoris per maiorem |
\({4~~3\phantom{3}~~1\phantom{3} \over 9~~13~~13}\) |
|
|
169 repertis quidem 148 et 1521, divides 148 per regulam de 1521, que est \({1~~0\phantom{3}~~0\phantom{3} \over 9~~13~~13}\); exibit \({4~~3\phantom{3}~~1\phantom{3} \over 9~~13~~13}\) unius
170 integri pro quesita divisione.