89 De emptione cuiusdam bolsonalie ad pondus libre

Quidam habet libras 11 cuiusdam bolsonalie, que est ad uncias 2 argenti, hoc est quod continentur uncie 2 argenti in libra ipsius. Et libra argenti valet Pisis libras 7 pisanorum. Et queratur quot pisaninos de ipsis libris 11 habere debeas. Pones itaque in capite tabule 1 pro libra una bolsonalie. 90 Et argentum quod est in ipsa libra, scilicet uncias 2, pones retro in
£ pis. arg. unc. l. bol.
\({5 \over 6}\) 12 2 1
     
7 12 11
220 eadem linea, et sub ipsis221 2 pones 12, scilicet uncias unius libre argenti; in quorum linea retro pones pretium ipsius libre, scilicet libras 7 pisanorum, et sub 1 posito pro libra bolsonalie pones libras 11 predicte bolsonalie, ut sit bolsonalia sub bolsonalia sicuti est argentum sub argento, scilicet uncie 12 sub unciis 2, ut in hac questione describitur. 91 Et multiplicabis ipsos tres numeros qui222 ad invicem positi223 sunt ex adverso secundum modum baracte, hoc est 11 per224 2, quorum summam225 per 7; erunt 154, que divides per reliquos duos numeros, scilicet per 1 et per 12: exibunt libre \({5 \over 6}\) 12, hoc est libre 12 et soldi 16 et denarii 8 pro pretio dictarum librarum 11 bolsonalie.

92 Aliter hoc idem per modum negotiationis operatur, videlicet ut videas
£ unc.
7 12
   
\({5 \over 6}\) 12 22
226 quantum argentum est in illis libris 11 bolsonalie, cum in libra una sint uncie 2 argenti, et invenies esse uncias 22 in ipsis libris 11227 bolsonalie; quarum pretium queras, cum libra argenti valet228 libras 7, cuius rei descriptio hec est.

93 De eodem229

Item si queratur quot pisaninos de unciis 11 dicte bolsonalie suprascripta ratione habueris, cum in hac questione queratur pretium unciarum bolsonalie debes ponere uncias 12 pro libra bolsonalie, ut sint uncie 11 sub unciis 12, ut in hac alia descriptione ostenditur. Et multiplicabis 11 per 2, que per 7; erunt 154, que divide per 12 et per 12, hoc est per230 \({1~~0~~\phantom{1}0 \over 3~~4~~12}\). 94 Sed quia locus in quo
£ arg. unc. unc.
\({2~~\phantom{1}4~~\phantom{1}1 \over 3~~12~~20}\) 1 2 12
     
7 12 11
231 ponenda est summa divisionis est super libras, scilicet super 7, oportet nos multiplicare 154 per 5 et ponere 5 sub virgula divisionis, et aptare ea cum 4 que sunt sub ipsa virgula, faciens ex eis \({1 \over 20}\): exibit libra232 \({2~~\phantom{1}4~~\phantom{1}1 \over 3~~12~~20}\) 1 pro pretio illarum unciarum 11.

95 Item si queratur quantum valeant denarii 11 de cantera ipsius
£ unc. arg. d. cant.
\({1~~1~~10~~\phantom{1}0 \over 3~~5~~12~~20}\) 2 300
     
7 12 11
233 bolsonalie, describe pondus denariorum unius libre, scilicet 300 super denarios 11, ut sint denarii de cantera sub denariis de cantera, ut in hac alia patet descriptione; et multiplicabis 11 per 2, que per 7; erunt 154234, que divide per 12 et per 300, hoc est per \({1~~0~~\phantom{1}0~~\phantom{1}0 \over 3~~5~~12~~20}\): exibunt \({1~~1~~10~~\phantom{1}0 \over 3~~5~~12~~20}\), hoc est denarii \({1~~1 \over 3~~5}\) 10 pro pretio illorum denariorum 11 de cantera.

96 Rursum quidam habet libras \({2 \over 3}\) 8 cuiusdam bolsonalie que est ad
£ pis. arg. unc. l. bol.
\({1~~\phantom{1}1~~\phantom{1}2 \over 2~~12~~20}\) 12 9  
  \({1 \over 4}\) 2 1
149   26
\({9 \over 20}\) 7 12 \({2 \over 3}\) 8
235 uncias \({1 \over 4}\) 2 argenti, et libra argenti valet libras \({9 \over 20}\) 7 pisanorum, et queratur quot pisaninos habuerit pro ipsis libris \({2 \over 3}\) 8 bolsonalie. Describe questionem ut hic ostenditur, et multiplicabis \({2 \over 3}\)236 8 per \({1 \over 4}\) 2, quia sunt ex adverso, et eorum summam multiplicabis per \({9 \over 20}\) 7, cum sint eisdem237 \({1 \over 4}\) 2 ex adverso, et divides summam per reliquos duos numeros, scilicet per 1 et per 12, et evitabis hoc quod evitare poteris: exibunt libre \({1~~\phantom{1}1~~\phantom{1}2 \over 2~~12~~20}\) 12 pro pretio illarum librarum \({2 \over 3}\) 8.

97 Nam si suprascriptas libras \({2 \over 3}\) 8 dicte bolsonalie uncias esse
£ pis. unc. arg. unc. bol.
\({1~~\phantom{1}2~~\phantom{1}0 \over 8~~12~~20}\) 1 9  
  \({1 \over 4}\) 2 12
149   26
\({9 \over 20}\) 7 12 \({2 \over 3}\) 8
238 proposueris, describes uncias unius libre bolsonalie, scilicet 12, super uncias \({2 \over 3}\) 8, ut in questione ostenditur. Et multiplicabis 26 que sunt super \({2 \over 3}\) 8 per 9 que sunt super \({1 \over 4}\) 2, que per 149 vigesimas239, et divides summam per 12 et per 12 et per omnes ruptos, scilicet per 3 et per 4 et per 20, et evitabis hoc quod evitare poteris: exibit libra240 \({1~~\phantom{1}2~~\phantom{1}0 \over 8~~12~~20}\) 1, hoc est soldi 20 et denarii \({1 \over 8}\) 2 pro pretio illarum unciarum \({2 \over 3}\) 8 bolsonalie.

98 De eodem241

Rursus si prescriptas uncias \({2 \over 3}\) 8 denarios de pondere cantere esse242
£ pis. unc. arg. d. pesi
\({1~~\phantom{1}8~~\phantom{1}6~~\phantom{1}9~~\phantom{1}0 \over 2~~10~~10~~12~~20}\) 9  
  \({1 \over 4}\) 2 300
149   26
\({9 \over 20}\) 7 12 \({2 \over 3}\) 8
243 proposueris, describe denarios cantere unius libre, scilicet 300, super denarios \({2 \over 3}\) 8, ut in hac questione ostenditur. Et multiplicabis 26 per 9, que per 149, et divides per 300 et per 12 et per omnes ruptos, et evitabis hoc quod evitare poteris: exibunt \({1~~\phantom{1}8~~\phantom{1}6~~\phantom{1}9~~\phantom{1}0 \over 2~~10~~10~~12~~20}\), hoc est denarii \({1~~\phantom{1}8~~\phantom{1}6 \over 2~~10~~10}\) 9, parum videlicet amplius de denariis \({2 \over 3}\) 9.

99 De eodem244

Item quidam habet libras 11 et uncias 7 et denarios ponderis de cantera \({1 \over 2}\) 13, hoc est libras245 \({1~~13~~7 \over 2~~25~~12}\) 11 cuiusdam bolsonalie, in cuius libra sunt246 uncie 5 et denarii247 ponderis de cantera 7, hoc est uncie \({7 \over 25}\) 5; et libra argenti valet libras \({5~~11 \over 12~~20}\) 7 pisanorum. Fac itaque uncias de libris \({1~~13~~7 \over 2~~25~~12}\) 11: erunt uncie \({1~~13 \over 2~~25}\) 139, quas describe sub unciis libre bolsonalie, scilicet sub 12, ut sint uncie sub unciis, ut in descriptione ostenditur. 100 Et multiplicabis uncias 139 bolsonalie per suam
  unc. arg. unc. bol.
  132 ⑥ 12
\({9 \over 20}\) 5
1817   6977
\({\phantom{1}5~~11 \over 12~~20}\) 7 12 \({1~~13 \over 2~~25}\) 139
248 virgulam, hoc est per 25, et adde 13, que per 2 et adde 1: erunt 6977, super que pone pensam ipsarum, que est 5 per septenarium. Deinde multiplica uncias 5 argenti per suam virgulam, hoc249 est per 25 et adde 7: erunt 132, que pone super \({7 \over 25}\) 5, et desuper pone pensam, que est 6. 101 Similiter facies de libris \({\phantom{1}5~~11 \over 12~~20}\) 7, et habebis super ipsa 1817, quorum pensa est 4. Deinde multiplica 6977 per 132, quorum summam multiplica per 1817, et divides totam summam per 12 bolsonalie et per 12 argenti et per omnes numeros qui sunt sub virgulis; et evitabis hoc quod evitare poteris, et aptabis ruptos, et probabis multiplicationes et divisiones250 secundum quod superius demonstravimus, et habebis libras \({2~~4~~\phantom{1}9~~\phantom{1}1~~\phantom{1}6~~\phantom{1}8~~14 \over 3~~5~~10~~10~~10~~12~~20}\) 38 pro pretio suprascriptarum unciarum \({1~~13 \over 2~~25}\) 139; et est pensa summe suprascripti pretii 3 per septenarium post evitationem.

  • 220
    £ pis. arg. unc. l. bol.
    \({5 \over 6}\) 12 (\({5 \over 6}\) 12:   om. R) 2 1
         
    7 12 11
    (\({5 \over 6}\) 12:   om. R) :   om. V    add. V2
  • 221ipsis:   ipsos F   ipso α
  • 222qui Giusti   quia ω
  • 223positi:   oppositi R
  • 224per:   et ( supra lineam S) per S
  • 225summam:   summa A F R S
  • 226
    £ unc.
    7 12
       
    \({5 \over 6}\) 12 (\({5 \over 6}\) 12:   om. R S) 22
    (\({5 \over 6}\) 12:   om. R S) :   om. V    add. V2
  • 22711:   8 α F S
  • 228valet:   valeat R
  • 229De eodem:   om. R
  • 230per:   om. A F S V
  • 231
    £ arg. unc. unc.
    \({2~~\phantom{1}4~~\phantom{1}1 \over 3~~12~~20}\) 1 (\({2~~\phantom{1}4~~\phantom{1}1 \over 3~~12~~20}\) 1:   om. F R S) 2 12
         
    7 12 11
    (\({2~~\phantom{1}4~~\phantom{1}1 \over 3~~12~~20}\) 1:   om. F R S) :   om. V
  • 232exibit libra:   exibunt libre α R
  • 233
    £ unc. arg. d. cant.
    \({1~~1~~10~~\phantom{1}0 \over 3~~5~~12~~20}\) (\({1~~1~~10~~\phantom{1}0 \over 3~~5~~12~~20}\):   om. F R S) 2 300
         
    7 12 11
    (\({1~~1~~10~~\phantom{1}0 \over 3~~5~~12~~20}\):   om. F R S) :   om. V
  • 234154:   254 F S
  • 235
    £ pis. arg. unc. l. bol.
    \({1~~\phantom{1}1~~\phantom{1}2 \over 2~~12~~20}\) 12 (\({1~~\phantom{1}1~~\phantom{1}2 \over 2~~12~~20}\) 12:   om. F R S) 9  
      \({1 \over 4}\) 2 1
    149   26
    \({9 \over 20}\) 7 12 \({2 \over 3}\) 8
    (\({1~~\phantom{1}1~~\phantom{1}2 \over 2~~12~~20}\) 12:   om. F R S) :   om. V
  • 236\({2 \over 3}\):   \({1 \over 3}\) α
  • 237eisdem:   eadem α   om. F
  • 238
    £ pis. unc. arg. unc. bol.
    \({1~~\phantom{1}2~~\phantom{1}0 \over 8~~12~~20}\) 1 (\({1~~\phantom{1}2~~\phantom{1}0 \over 8~~12~~20}\) 1:   om. F R S) 9  
      \({1 \over 4}\) 2 12
    149   26
    \({9 \over 20}\) 7 12 \({2 \over 3}\) 8
    (\({1~~\phantom{1}2~~\phantom{1}0 \over 8~~12~~20}\) 1:   om. F R S) :   om. V
  • 239vigesimas:   om. R
  • 240exibit libra:   exibunt libre A F G R
  • 241De eodem:   om. R
  • 242esse:   om. F    supra lineam F2
  • 243
    £ pis. unc. arg. d. pesi
    \({1~~\phantom{1}8~~\phantom{1}6~~\phantom{1}9~~\phantom{1}0 \over 2~~10~~10~~12~~20}\) (\({1~~\phantom{1}8~~\phantom{1}6~~\phantom{1}9~~\phantom{1}0 \over 2~~10~~10~~12~~20}\):   om. F R S) 9  
      \({1 \over 4}\) 2 300
    149   26
    \({9 \over 20}\) 7 12 \({2 \over 3}\) 8
    (\({1~~\phantom{1}8~~\phantom{1}6~~\phantom{1}9~~\phantom{1}0 \over 2~~10~~10~~12~~20}\):   om. F R S) :   om. V
  • 244De eodem:   om. R S
  • 245libras:   libre ( per compendium A V) α F R S
  • 246sunt bis R
  • 247denarii Giusti   denarios ω
  • 248
      unc. arg. unc. bol.
      132 ⑥ 12
    \({9 \over 20}\) 5
    1817   6977
    \({\phantom{1}5~~11 \over 12~~20}\) 7 12 \({1~~13 \over 2~~25}\) 139
    :   om. V
  • 249hoc:   id R
  • 250et divisiones:   om. R

Liber Abbaci

Instrumenta

Capitulum nonum

Indice